Published online by Cambridge University Press: 15 April 2020
Bioinformatic investigations indicate that has-mir-206 (microRNA-206, miRNA-206) could regulate BDNF protein synthesis by interfering with BDNF mRNA translation, which is disrupted in bipolar disorder (BPD).
This study is to investigate whether miRNA-206 gene variants were associated with BPD susceptibility in a Han Chinese population.
342 patients who met DSM-IV criteria for bipolar disorder type I (BPD-I) or type II (BPD-II) and 386 matched health controls were enrolled into this study. the miRNA-206 gene and +/-500bp were selected for gene sequencing. for the case-control genetic comparisons, differences in the genotype and allele distributions between patients and controls were examined using Pearson's χ2 test.
Gene sequencing showed that there are two polymorphisms rs16882131(C/T) and rs62408583 (A/C) located at the upstream of miRNA-206 gene, which are complete linkage disequilibrium. the association analysis showed that there was no significant difference for genotype frequencies (χ2 = 2.075, df = 2, P = 0.354) or for allele frequencies (χ2 = 0.041, df = 1, P = 0.839) between BPD patients and controls. Similarly, no significant difference was found between BPD-I patients and controls (genotype χ2 = 1.411, df = 2, P = 0.494; allele χ2 = 0.380, df = 1, P = 0.538). However, there was significant difference between BPD-II patients and controls (genotype χ2 = 7.933, df = 2, P = 0.019; allele χ2 = 5.403, df = 1, P = 0.020).
Our findings do not support that BPD susceptibility was associated with miRNA-206 gene polymorphisms in the studied Han Chinese population. the association between miRNA-206 gene polymorphisms and bipolar disorder type II is needed to be carefully interpreted. Further studies are necessary to elucidate the involvement miRNA-206 in the pathophysiology of BPD.
Comments
No Comments have been published for this article.