Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T03:20:26.608Z Has data issue: false hasContentIssue false

Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies

Published online by Cambridge University Press:  16 April 2020

Anissa Abi-Dargham*
Affiliation:
Departments of Psychiatry and Radiology, New York State Psychiatric Institute, Unit 31, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
Marc Laruelle
Affiliation:
Departments of Psychiatry and Radiology, New York State Psychiatric Institute, Unit 31, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
*
*Corresponding author. Tel.: +1 212 543 5066; fax: +1 212 568 6171. E-mail address: [email protected] (A. Abi-Dargham).
Get access

Abstract

Multiple lines of evidence including recent imaging studies suggest that schizophrenia is associated with an imbalance of the dopaminergic system, entailing hyperstimulation of striatal dopamine (DA) D2 receptors and understimulation of cortical DA D1 receptors. This DA endophenotype presumably emerges from the background of a more general synaptic dysconnectivity, involving alterations in N-methyl-d-aspartate (NMDA) and glutamatergic (GLU) functions. Equally important is the fact that this DA dysregulation might further impair NMDA transmission. The first generation antipsychotic (FGA) drugs are characterized by high affinity to and generally high occupancy of D2 receptors. The efficacy of FGAs is limited by a high incidence of extrapyramidal side-effects (EPS). Second generation antipsychotic (SGA) drugs display reduced EPS liability and modest but clinically significant enhanced therapeutic efficacy. Compared to FGAs, the improved therapeutic action of SGAs probably derives from a more moderate D2 receptor blockade. We will review the effects of SGAs on other neurotransmitter systems and conclude by highlighting the importance of therapeutic strategies aimed at directly increasing prefrontal DA, D1 receptor transmission or NMDA transmission to enhance the therapeutic effect of moderate D2 receptor antagonism.

Type
Original article
Copyright
Copyright © Elsevier SAS 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Dargham, A, Gil, R, Krystal, J, Baldwin, RM, Seibyl, JP, Bowers, Met al.Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatr 1998;155:761767.Google Scholar
Abi-Dargham, A, Rodenhiser, J, Printz, D, Zea-Ponce, Y, Gil, R, Kegeles, Let al.Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci US 2000;97:81048109.CrossRefGoogle Scholar
Abi-Dargham, A, Mawlawi, O, Lombardo, I, Gil, R, Martinez, D, Huang, Yet al.Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 2002;22:37083719.CrossRefGoogle Scholar
Ahlenius, SClozapine: dopamine D1 receptor agonism in the prefrontal cortex as the code to decipher a Rosetta stone of antipsychotic drugs. Pharmacol Toxicol 1999;84:193196.CrossRefGoogle ScholarPubMed
Akil, M, Pierri, JN, Whitehead, RE, Edgar, CL, Mohila, C, Sampson, ARet al.Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatr 1999;156:15801589.CrossRefGoogle ScholarPubMed
Anden, NEDopamine turnover in the corpus striatum and the lumbic system after treatment with neuroleptic and anti-acetylcholine drugs. J Pharm Pharmacol 1972;24:905906.CrossRefGoogle ScholarPubMed
Anden, N, Stock, GEffect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol 1973;25:346348.CrossRefGoogle ScholarPubMed
Angrist, B, Van Kammen, DPCNS stimulants as a tool in the study of schizophrenia. Trends Neurosci 1984;7:388390.CrossRefGoogle Scholar
Arnt, J, Skarsfeldt, TDo novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacolog 1998;18:63101.CrossRefGoogle Scholar
Baldessarini, RJ, Frankenburg, FRClozapine. A novel antipsychotic agent. N Engl J Med 1991;324:746754.Google ScholarPubMed
Bertolino, A, Breier, A, Callicott, JH, Adler, C, Mattay, VS, Shapiro, Met al.The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacolog 2000;22:125132.CrossRefGoogle Scholar
Bigliani, V, Mulligan, RS, Acton, PD, Visvikis, D, Ell, PJ, Stephenson, Cet al.In vivo occupancy of striatal and temporal cortical D2/D3 dopamine receptors by typical antipsychotic drugs. [123I]epidepride single photon emission tomography (SPET) study. Br J Psychiatr 1999;175:231238.CrossRefGoogle ScholarPubMed
Bigliani, V, Mulligan, RS, Acton, PD, Ohlsen, RI, Pike, VW, Ell, PJet al.Striatal and temporal cortical D2/D3 receptor occupancy by olanzapine and sertindole in vivo: a [123I]epidepride single photon emission tomography (SPET) study. Psychopharmacology (Berlin 2000;150:132140.CrossRefGoogle Scholar
Breier, A, Su, TP, Saunders, R, Carson, RE, Kolachana, BS, Debartolomeis, Aet al.Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci US 1997;94:25692574.CrossRefGoogle ScholarPubMed
Bressan, RA, Erlandsson, K, Jones, HM, Mulligan, RS, Ell, PJ, Pilowsky, LSOptimizing limbic selective D2/D3 receptor occupancy by risperidone: a [123I]epidepride SPET study. J Clin Psychopharmacol 2003;23:514.CrossRefGoogle Scholar
Bressan, RA, Erlandsson, K, Jones, HM, Mulligan, R, Flanagan, RJ, Ell, PJet al.Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? An in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients. Am J Psychiatr 2003;160:14131420.CrossRefGoogle ScholarPubMed
Carlsson, A, Lindqvist, MEffect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh. 1963;20:140144.CrossRefGoogle ScholarPubMed
Carpenter, WT, Buchanan, RWSchizophrenia. N Engl J Med 1994;330:681690.CrossRefGoogle ScholarPubMed
Centonze, D, Picconi, B, Gubellini, P, Bernardi, G, Calabresi, PDopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 2001;13:10711077.CrossRefGoogle ScholarPubMed
Cepeda, C, Levine, MSDopamine and N-methyl-d-aspartate receptor interactions in the neostriatum. Dev Neurosci 1998;20:18.CrossRefGoogle ScholarPubMed
Cepeda, C, Hurst, RS, Altemus, KL, Flores-Hernandez, J, Calvert, CR, Jokel, ESet al.Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol 2001;85:659670.CrossRefGoogle ScholarPubMed
Chiodo, L, Bunney, BTypical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 1983;3:16071609.CrossRefGoogle ScholarPubMed
Creese, I, Burt, DR, Snyder, SHDopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Scienc 1976;19:481483.CrossRefGoogle Scholar
Cussac, D, Pasteau, V, Millan, MJCharacterisation of Gs activation by dopamine D1 receptors using an antibody capture assay: antagonist properties of clozapine. Eur J Pharmacol 2004;485:111117.CrossRefGoogle ScholarPubMed
Daniel, DG, Weinberger, DR, Jones, DW, Zigun, JR, Coppola, R, Handel, Set al.The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 1991;11:19071917.CrossRefGoogle Scholar
Dao-Castellana, MH, Paillere-Martinot, ML, Hantraye, P, Attar-Levy, D, Remy, P, Crouzel, Cet al.Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr Res 1997;23:167174.CrossRefGoogle ScholarPubMed
Davis, KL, Kahn, RS, Ko, G, Davidson, MDopamine in schizophrenia: a review and reconceptualization. Am J Psychiatr 1991;148:14741486.Google ScholarPubMed
Davis, JM, Chen, N, Glick, IDA meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatr 2003;60:553564.CrossRefGoogle ScholarPubMed
de Beaurepaire, R, Labelle, A, Naber, D, Jones, BD, Barnes, TRAn open trial of the D1 antagonist SCH 39166 in six cases of acute psychotic states. Psychopharmacology (Berlin 1995;121:323327.CrossRefGoogle ScholarPubMed
de Paulis, TM-100907 (Aventis). Curr Opin Invest Drug 2001;2:123132.Google Scholar
Dean, B, Scarr, EAntipsychotic drugs: evolving mechanisms of action with improved therapeutic benefits. Curr Drug Targets CNS Neurol Disord 2004;3:2172175.CrossRefGoogle ScholarPubMed
Delay, J, Deniker, P, Harl, JMTherapeutic use in psychiatry of phenothiazine of central elective action (4560 RP). Ann Med Psychol (Paris 1952 112117.Google Scholar
DeLeon, A, Patel, NC, Crismon, MLAripiprazole: a comprehensive review of its pharmacology, clinical efficacy, and tolerability. Clin Ther 2004;26:649656.CrossRefGoogle Scholar
Den Boer, JA, Van Megen, HJ, Fleischhacker, WW, Louwerens, JW, Slaap, BR, Westenberg, HGet al.Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology (Berlin 1995;121:317322.CrossRefGoogle ScholarPubMed
Deutch, AY, Clark, WA, Roth, RHPrefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Res 1990;521:311315.CrossRefGoogle ScholarPubMed
Deutch, AY, Moghadam, B, Innis, R, Krystal, J, Aghajanian, G, Bunney, Bet al.Mechanisms of action of atypical antipsychotic drugs. Implication for novel therapeutic strategies for schizophrenia. Schizophr Res 1991;4:2156.CrossRefGoogle Scholar
Deutch, AY, Lee, MC, Iadarola, MJRegionally specific effects of atypical antipsychotic drugs on striatal fos expression: the nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 1992;3:332341.CrossRefGoogle ScholarPubMed
Dolan, RJ, Fletcher, P, Frith, CD, Friston, KJ, Frackowiak, RS, Grasby, PMDopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Natur 1995;378:180182.CrossRefGoogle Scholar
Dunah, AW, Standaert, DGDopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 2001;21:55465548.CrossRefGoogle ScholarPubMed
Duncan, GE, Zorn, S, Lieberman, JAMechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol Psychiatr 1999;4:418428.CrossRefGoogle ScholarPubMed
Farde, L, Wiesel, FA, Halldin, C, Sedvall, GCentral D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatr 1988;45:7176.CrossRefGoogle ScholarPubMed
Farde, L, Nordström, AL, Wiesel, FA, Pauli, S, Halldin, C, Sedvall, GPositron emission tomography analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Arch Gen Psychiatr 1992;49:538544.CrossRefGoogle ScholarPubMed
Flores-Hernandez, J, Cepeda, C, Hernandez-Echeagaray, E, Calvert, CR, Jokel, ES, Fienberg, AAet al.Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 2002;88:30103020.CrossRefGoogle ScholarPubMed
Frankle, WG, Lerma, J, Laruelle, MThe synaptic hypothesis of schizophrenia. Neuro 2003;39:205216.Google ScholarPubMed
Frankle, W, Gil, R, Hackett, E, Mawlawi, O, Zea-Ponce, Y, Zhu, Zet al.Occupancy of dopamine D2 receptors by the atypical antipsychotic drugs risperidone and olanzapine: theoretical implications. Psychopharmacology (Berlin 2004In pressGoogle ScholarPubMed
Friedman, JI, Temporini, H, Davis, KLPharmacologic strategies for augmenting cognitive performance in schizophrenia. Biol Psychiatr 1999;45:16.CrossRefGoogle Scholar
Geddes, J, Freemantle, N, Harrison, P, Bebbington, PAtypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BM 2000;321:13711376.CrossRefGoogle ScholarPubMed
Gefvert, O, Bergstrom, M, Langstrom, B, Lundberg, T, Lindstrom, L, Yates, RTime course of central nervous dopamine-D-2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel(R)) in patients with schizophrenia. Psychopharmacology (Berl. 1998;135:119126.CrossRefGoogle Scholar
Gessa, GL, Devoto, P, Diana, M, Flore, G, Melis, M, Pistis, MDissociation of haloperidol, clozapine, and olanzapine effects on electrical activity of mesocortical dopamine neurons and dopamine release in the prefrontal cortex. Neuropsychopharmacolog 2000;22:642649.CrossRefGoogle ScholarPubMed
Goff, DC, Coyle, JTThe emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatr 2001;158:13671377.CrossRefGoogle ScholarPubMed
Goff, DC, Tsai, G, Levitt, J, Amico, E, Manoach, D, Schoenfeld, DAet al.A placebo-controlled trial of d-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatr 1999;56:2127.CrossRefGoogle ScholarPubMed
Goldman-Rakic, PS, Muly, EC3rdWilliams, GV D(1)receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000;31:295301.CrossRefGoogle ScholarPubMed
Grace, AAPhasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscienc 1991;41:124.CrossRefGoogle ScholarPubMed
Grace, AA, Bunney, BS, Moore, H, Todd, CLDopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 1997;20:3137.CrossRefGoogle Scholar
Graybiel, AMThe basal ganglia and cognitive pattern generators. Schizophr Bull 1997;23:459469.CrossRefGoogle ScholarPubMed
Guo, N, Hwang, D, Lo, E, Huang, YH, Laruelle, M, Abi-Dargham, ADopamine depletion and in vivo binding of PET D1 radioligands: implication for imaging studies in schizophrenia. Neuropsychopharmacolog 2003;28:17031711.CrossRefGoogle Scholar
Harrison, PJ, Weinberger, DRSchizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatr 2004In pressGoogle Scholar
Heresco-Levy, UGlutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatr 2003;27:11131123.CrossRefGoogle ScholarPubMed
Heresco-Levy, U, Javitt, DC, Ermilov, M, Silipo, G, Shimoni, JDouble-blind, placebo-controlled, crossover trial of d-cycloserine adjuvant therapy for treatment-resistant schizophrenia. Int J Neuropsychopharmacol 1998;1:131136.CrossRefGoogle ScholarPubMed
Heresco-Levy, U, Javitt, DC, Ermilov, M, Mordel, C, Silipo, G, Lichtenstein, MEfficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatr 1999;56:2936.CrossRefGoogle ScholarPubMed
Heresco-Levy, U, Ermilov, M, Shimoni, J, Shapira, B, Silipo, G, Javitt, DCPlacebo-controlled trial of d-cycloserine added to conventional neuroleptics, olanzapine and risperidone in schizophrenia. Am J Psychiatr 2002;159:480482.CrossRefGoogle Scholar
Hernandez-Lopez, S, Bargas, J, Surmeier, DJ, Reyes, A, Galarraga, ED1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 1997;17:33343342.CrossRefGoogle ScholarPubMed
Hietala, J, Syvalahti, E, Vuorio, K, Rakkolainen, V, Bergman, J, Haaparanta, Met al.Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lance 1995;346:11301131.CrossRefGoogle ScholarPubMed
Hietala, J, Syvalahti, E, Vilkman, H, Vuorio, K, Rakkolainen, V, Bergman, Jet al.Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 1999;35:4150.CrossRefGoogle ScholarPubMed
Hippius, HA historical perspective of clozapine. J Clin Psychiatr 1999;60:S22S23.Google ScholarPubMed
Ichikawa, J, Ishii, H, Bonaccorso, S, Fowler, WL, O’Laughlin, IA, Meltzer, HY5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001;76:15211531.CrossRefGoogle Scholar
Ichikawa, J, Dai, J, O’Laughlin, IA, Fowler, WL, Meltzer, HYAtypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacolog 2002;26:325329.CrossRefGoogle ScholarPubMed
Idanpaan-Heikkila, J, Alhava, E, Olkinuora, M, Palva, IPAgranulocytosis during treatment with clozapine. Eur J Clin Pharmacol 1977;11:193198.CrossRefGoogle Scholar
Jackson, DM, Wikstrom, H, Liao, YIs clozapine an (partial) agonist at both dopamine D1 and D2 receptors?. Psychopharmacology (Berlin 1998;138:213216.CrossRefGoogle ScholarPubMed
Javitt, DC, Zukin, SRRecent advances in the phencyclidine model of schizophrenia. Am J Psychiatr 1991;148:13011308.Google ScholarPubMed
Javitt, DC, Zylberman, I, Zukin, SR, Heresco-Levy, U, Lindenmayer, JPAmelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatr 1994;151:12341236.Google ScholarPubMed
Javitt, DC, Silipo, G, Cienfuegos, A, Shelley, AM, Bark, N, Park, Met al.Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 2001;4:385391.CrossRefGoogle ScholarPubMed
Jentsch, JD, Roth, RHThe neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacolog 1999;20:201205.CrossRefGoogle ScholarPubMed
Kahn, RS, Harvey, PD, Davidson, M, Keefe, RS, Apter, S, Neale, JMet al.Neuropsychological correlates of central monoamine function in chronic schizophrenia: relationship between CSF metabolites and cognitive function. Schizophr Res 1994;11:217224.CrossRefGoogle ScholarPubMed
Kane, J, Honigfeld, G, Singer, J, Meltzer, HYClozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatr 1988;45:789796.CrossRefGoogle ScholarPubMed
Kapur, S, Seeman, PAntipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J Psychiatry Neurosci 2000;25:161166.Google ScholarPubMed
Kapur, S, Seeman, PDoes fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatr 2001;158:360369.CrossRefGoogle ScholarPubMed
Kapur, S, Zipursky, RB, Remington, G, Jones, C, DaSilva, J, Wilson, AAet al.5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatr 1998;155:921928.CrossRefGoogle ScholarPubMed
Kapur, S, Zipursky, RB, Remington, GClinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatr 1999;156:286293.Google Scholar
Kapur, S, Zipursky, R, Jones, C, Remington, G, Houle, SRelationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatr 2000;157:514520.CrossRefGoogle ScholarPubMed
Karle, J, Clemmesen, L, Hansen, L, Andersen, M, Andersen, J, Fensbo, Cet al.NNC 01-0687, a selective dopamine D1 receptor antagonist, in the treatment of schizophrenia. Psychopharmacology (Berlin 1995;121:328329.CrossRefGoogle ScholarPubMed
Karlsson, P, Smith, L, Farde, L, Harnryd, C, Sedvall, G, Wiesel, FALack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berlin 1995;121:309316.CrossRefGoogle ScholarPubMed
Karlsson, P, Farde, L, Halldin, C, Sedvall, GPET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatr 2002;159:761767.CrossRefGoogle ScholarPubMed
Knable, MB, Weinberger, DRDopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 1997;11:123131.CrossRefGoogle Scholar
Kolachana, BS, Saunders, RC, Bachevalier, J, Weinberger, DRAbnormal prefrontal cortical regulation of striatal dopamine release after neonatal medial temporal-limbic lesions in rhesus monkeys. Soc Neurosci 1996Abst. 22:1974Google Scholar
Konradi, C, Heckers, SMolecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003;97:153179.CrossRefGoogle ScholarPubMed
Kotter, RPostsynaptic integration of glutamatergic and dopaminergic signals in the striatum. Prog Neurobiol 1994;44:163196.CrossRefGoogle ScholarPubMed
Krystal, JH, Karper, LP, Seibyl, JP, Freeman, GK, Delaney, R, Bremner, JDet al.Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatr 1994;51:199214.CrossRefGoogle ScholarPubMed
Kufferle, B, Tauscher, J, Asenbaum, S, Vesely, C, Podreka, I, Brücke, Tet al.IBZM SPECT imaging of striatal dopamine-2 receptors in psychotic patients treated with the novel antipsychotic substance quetiapine in comparison to clozapine and haloperidol. Psychopharmacology (Berl. 1997;133:323328.CrossRefGoogle ScholarPubMed
Lahti, AC, Koffel, B, LaPorte, D, Tamminga, CASubanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacolog 1995;13:919.CrossRefGoogle ScholarPubMed
Lahti, AC, Weiler, MA, Tamara Michaelidis, BA, Parwani, A, Tamminga, CAEffects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacolog 2001;25:455467.CrossRefGoogle ScholarPubMed
Laruelle, MDopamine transmission in the schizophrenic brain. Weinberger, DR, Hirsch, SSchizophrenia, 2nd e Oxford, UK: Blackwell Publishing; 2003. 365387.CrossRefGoogle Scholar
Laruelle, M, Abi-Dargham, A, Van Dyck, CH, Gil, R, De Souza, CD, Erdos, Jet al.Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug free schizophrenic subjects. Proc Natl Acad Sci US 1996;93:92359240.CrossRefGoogle ScholarPubMed
Laruelle, M, Abi-Dargham, A, Gil, R, Kegeles, L, Innis, RIncreased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatr 1999;46:5672.CrossRefGoogle ScholarPubMed
Leveque, JC, Macias, W, Rajadhyaksha, A, Carlson, RR, Barczak, A, Kang, Set al.Intracellular modulation of NMDA receptor function by antipsychotic drugs. J Neurosci 2000;20:40114020.CrossRefGoogle ScholarPubMed
Levine, MS, Li, Z, Cepeda, C, Cromwell, HC, Altemus, KLNeuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synaps 1996;24:6578.CrossRefGoogle ScholarPubMed
Lidsky, TIReevaluation of the mesolimbic hypothesis of antipsychotic drug action. Schizophr Bull 1995;21:6774.CrossRefGoogle ScholarPubMed
Lieberman, JA, Kane, JM, Alvir, JProvocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl. 1987;91:415433.CrossRefGoogle Scholar
Lindstrom, LH, Gefvert, O, Hagberg, G, Lundberg, T, Bergstrom, M, Hartvig, Pet al.Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by l-(beta-11C) DOPA and PET. Biol Psychiatr 1999;46:681688.CrossRefGoogle ScholarPubMed
Lindvall, O, Björklund, ADopamine- and norepinephrine-containing neuron systems: their anatomy in the rat brain. Emson, PChemical neuroanatom New York: Raven Press; 1983. 229255.Google Scholar
Mamo, D, Kapur, S, Shammi, CM, Papatheodorou, G, Mann, S, Therrien, Fet al.A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psychiatr 2004;161:818825.CrossRefGoogle ScholarPubMed
Marti, M, Mela, F, Bianchi, C, Beani, L, Morari, MStriatal dopamine-NMDA receptor interactions in the modulation of glutamate release in the substantia nigra pars reticulata in vivo: opposite role for D1 and D2 receptors. J Neurochem 2002;83:635644.CrossRefGoogle ScholarPubMed
Matthysse, SAntipsychotic drug actions: a clue to the neuropathology of schizophrenia?. Fed Proc 1973;32:200205.Google ScholarPubMed
Matthysse, SDopamine and the pharmacology of schizophrenia: the state of the evidence. J Psychiatr Res 1974;11:107113.CrossRefGoogle ScholarPubMed
Mawlawi, O, Martinez, D, Slifstein, M, Broft, A, Chatterjee, R, Hwang, DRImaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D2 receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 2001;21:10341057.CrossRefGoogle ScholarPubMed
McGowan, S, Lawrence, AD, Sales, T, Quested, D, Grasby, PPresynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch Gen Psychiatr 2004;61:134142.CrossRefGoogle ScholarPubMed
Melis, M, Diana, M, Gessa, GLClozapine potently stimulates mesocortical dopamine neurons. Eur J Pharmacol 1999;366:R11R13.CrossRefGoogle ScholarPubMed
Meltzer, HY, Matsubara, S, Lee, JCClassification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2, and serotonin 2 pki values. J Pharmacol Exp Ther 1989;251:238246.Google ScholarPubMed
Meltzer, HY, Li, Z, Kaneda, Y, Ichikawa, JSerotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatr 2003;27:11591172.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A, Miletich, RS, Kohn, PD, Esposito, G, Carson, RE, Quarantelli, Met al.Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002;5:267271.CrossRefGoogle Scholar
Miyamoto, S, Duncan, GE, Marx, CE, Lieberman, JATreatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatr 2004In pressGoogle Scholar
Mogenson, GJ, Jones, DL, Yim, CYFrom motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 1980;14:6997.CrossRefGoogle ScholarPubMed
Morari, M, O’Connor, WT, Ungerstedt, U, Fuxe, KDopamine D1 and D2 receptor antagonism differentially modulates stimulation of striatal neurotransmitter levels by N-methyl-d-aspartic acid. Eur J Pharmacol 1994;256:2330.CrossRefGoogle ScholarPubMed
Nicola, SM, Surmeier, J, Malenka, RCDopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000;23:185215.CrossRefGoogle ScholarPubMed
Ninan, I, Kulkarni, SKPartial agonistic action of clozapine at dopamine D2 receptors in dopamine depleted animals. Psychopharmacology (Berlin 1998;35:311317.CrossRefGoogle Scholar
Ninan, I, Wang, RYModulation of the ability of clozapine to facilitate NMDA- and electrically evoked responses in pyramidal cells of the rat medial prefrontal cortex by dopamine: pharmacological evidence. Eur J Neurosci 2003;17:13061312.CrossRefGoogle ScholarPubMed
Nordstrom, AL, Farde, L, Wiesel, FA, Forslund, K, Pauli, S, Halldin, Cet al.Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatr 1993;33:227235.CrossRefGoogle ScholarPubMed
Okubo, Y, Suhara, T, Suzuki, K, Kobayashi, K, Inoue, O, Terasaki, Oet al.Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Natur 1997;385:634636.CrossRefGoogle ScholarPubMed
Olney, JW, Farber, NBGlutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatr 1995;52:9981007.CrossRefGoogle Scholar
Onn, SP, West, AR, Grace, AADopamine-mediated regulation of striatal neuronal and network interactions. Trends Neurosci 2000;23:S48S56.CrossRefGoogle ScholarPubMed
Packard, MG, Knowlton, BJLearning and memory functions of the basal ganglia. Annu Rev Neurosci 2002;25:563593.CrossRefGoogle ScholarPubMed
Pantelis, C, Lambert, TJManaging patients with “treatment-resistant” schizophrenia. Med J Aust 2003;178:S62S66.CrossRefGoogle ScholarPubMed
Pehek, EA, Yamamoto, BKDifferential effects of locally administered clozapine and haloperidol on dopamine efflux in the rat prefrontal cortex and caudate-putamen. J Neurochem 1994;63:21182124.CrossRefGoogle ScholarPubMed
Peris, J, Dwoskin, LP, Zahniser, NRBiphasic modulation of evoked [3H]d-aspartate release by D-2 dopamine receptors in rat striatal slices. Synaps 1988;2:450456.CrossRefGoogle ScholarPubMed
Pickar, D, Su, TP, Weinberger, DR, Coppola, R, Malhotra, AK, Knable, MBet al.Individual variation in D2 dopamine receptor occupancy in clozapine-treated patients. Am J Psychiatr 1996;153:15711578.Google ScholarPubMed
Pilowsky, LS, Costa, DC, Ell, PJ, Murray, RM, Verhoeff, NP, Kerwin, RWClozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lance 1992;340:199202.CrossRefGoogle ScholarPubMed
Pilowsky, LS, Mulligan, RS, Acton, PD, Ell, PJ, Costa, DC, Kerwin, RWLimbic selectivity of clozapine. Lance 1997;350:490491.CrossRefGoogle ScholarPubMed
Pycock, CJ, Kerwin, RW, Carter, CJEffect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Natur 1980;286:7477.CrossRefGoogle ScholarPubMed
Reith, J, Benkelfat, C, Sherwin, A, Yasuhara, Y, Kuwabara, H, Andermann, Fet al.Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci US 1994;91:1165111654.CrossRefGoogle ScholarPubMed
Remington, GUnderstanding antipsychotic “atypicality”: a clinical and pharmacological moving target. J Psychiatry Neurosci 2003;28:275284.Google ScholarPubMed
Remington, G, Kapur, S, Zipursky, RThe relationship between risperidone plasma levels and dopamine D-2 occupancy: a positron emission tomographic study. J Clin Psychopharmacol 1998;18:8283.CrossRefGoogle Scholar
Robertson, G, Fibiger, HNeuroleptics increase C-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscienc 1992;46:315328.CrossRefGoogle ScholarPubMed
Robertson, GS, Matsumura, H, Fibiger, HCInduction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 1994;271:10581066.Google ScholarPubMed
Rollema, H, Lu, Y, Schmidt, AW, Zorn, SHClozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 1997;338:R3R5.CrossRefGoogle ScholarPubMed
Rollema, H, Lu, Y, Schmidt, AW, Sprouse, JS, Zorn, SH5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatr 2000;48:229237.CrossRefGoogle ScholarPubMed
Saint-Cyr, JA, Taylor, AE, Nicholson, KBehavior and the basal ganglia. Adv Neurol 1995;65:128.Google ScholarPubMed
Saper, CBRole of the cerebral cortex and striatum in emotional motor response. Prog Brain Res 1996;107:537550.CrossRefGoogle ScholarPubMed
Scherer, J, Tatsch, K, Schwarz, J, Oertel, W, Kirsch, MC, Albus, MStriatal D2-dopamine receptor occupancy during treatment with typical and atypical neuroleptics. Biol Psychiatr 1994;36:627629.CrossRefGoogle ScholarPubMed
Seeger, TF, Seymour, PA, Schmidt, AW, Zorn, SH, Schulz, DW, Lebel, LAet al.Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther 1995;275:101103.Google ScholarPubMed
Seeman, P, Lee, TAntipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Scienc 1975;188:12171219.CrossRefGoogle ScholarPubMed
Shapiro, DA, Renock, S, Arrington, E, Chiodo, LA, Liu, LX, Sibley, DRet al.Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacolog 2003;28:14001411.CrossRefGoogle ScholarPubMed
Smith, AD, Bolam, JPThe neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990;13:259265.CrossRefGoogle Scholar
Snyder, SHCathecolamines in the brain as mediator of amphetamine psychosis. Arch Gen Psychiatr 1972;27:169179.CrossRefGoogle Scholar
Starr, MSGlutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synaps 1995;19:264293.CrossRefGoogle ScholarPubMed
Stephenson, CM, Bigliani, V, Jones, HM, Mulligan, RS, Acton, PD, Visvikis, Det al.Striatal and extra-striatal D2/D3 dopamine receptor occupancy by quetiapine in vivo. [(123)I]-epidepride single photon emission tomography(SPET) study. Br J Psychiatr 2000;177:408415.CrossRefGoogle Scholar
Stevens, JAn anatomy of schizophrenia?. Arch Gen Psychiatr 1973;29:177189.CrossRefGoogle ScholarPubMed
Talvik, M, Nordstrom, AL, Nyberg, S, Olsson, H, Halldin, C, Farde, LNo support for regional selectivity in clozapine-treated patients: a PET study with [(11)C]raclopride and [(11)C]FLB 457. Am J Psychiatr 2001;158:926930.CrossRefGoogle Scholar
Tamminga, CA, Holcomb, HH, Gao, XM, Lahti, ACGlutamate pharmacology and the treatment of schizophrenia: current status and future directions. Int Clin Psychopharmacol 1995;3:2937.Google Scholar
Tauscher-Wisniewski, S, Kapur, S, Tauscher, J, Jones, C, Daskalakis, ZJ, Papatheodorou, Get al.Quetiapine: an effective antipsychotic in first-episode schizophrenia despite only transiently high dopamine-2 receptor blockade. J Clin Psychiatr 2002;63:992997.CrossRefGoogle ScholarPubMed
Tsai, G, Yang, P, Chung, LC, Lange, N, Coyle, JTD-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatr 1998;44:10811089.CrossRefGoogle ScholarPubMed
Weinberger, DRImplications of the normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatr 1987;44:660669.CrossRefGoogle ScholarPubMed
Weinberger, DR, Laruelle, MNeurochemical and neuropharmacological imaging in schizophrenia. Davis, KL, Charney, DS, Coyle, JT, Nemeroff, CNeuropharmacology—the fifth generation of progres Philadelphia, PA, USA: Lippincott, Williams and Wilkins; 2001.Google Scholar
Weinberger, DR, Berman, KF, Zec, RFPhysiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional Cerebral Blood flow evidence. Arch Gen Psychiatr 1986;43:114124.CrossRefGoogle Scholar
Weinberger, DR, Berman, KF, Chase, TNMesocortical dopaminergic function and human cognition. Ann N Y Acad Sci 1988;537:330338.CrossRefGoogle ScholarPubMed
West, AR, Grace, AAOpposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 2002;22:294304.CrossRefGoogle ScholarPubMed
Westerink, BH, Kawahara, Y, De Boer, P, Geels, C, De Vries, JB, Wikstrom, HVet al.Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. Eur J Pharmacol 2001;412:127138.CrossRefGoogle ScholarPubMed
White, FJ, Wang, RYDifferential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Scienc 1983;221:10541057.CrossRefGoogle ScholarPubMed
Wiesel, FA, Farde, L, Nordstrom, AL, Sedvall, GCentral D1- and D2-receptor occupancy during antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatr 1990;14:759767.CrossRefGoogle ScholarPubMed
Wilson, CJ, Kawaguchi, YThe origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 1996;16:23972410.CrossRefGoogle ScholarPubMed
Wolkin, A, Barouche, F, Wolf, AP, Rotrosen, J, Fowler, JS, Shiue, CYet al.Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatr 1989;146:905908.Google ScholarPubMed
Xiberas, X, Martinot, JL, Mallet, L, Artiges, E, Loc’h, C, Maziere, Bet al.Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatr 2001;179:503508.CrossRefGoogle ScholarPubMed
Xiberas, X, Martinot, JL, Mallet, L, Artiges, E, Canal, M, Loc’h, Cet al.In vivo extrastriatal and striatal D2 dopamine receptor blockade by amisulpride in schizophrenia. J Clin Psychopharmacol 2001;21:207214.CrossRefGoogle Scholar
Yamamoto, BK, Cooperman, MADifferential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 1994;14:41594166.CrossRefGoogle ScholarPubMed
Yasuno, F, Suhara, T, Okubo, Y, Sudo, Y, Inoue, M, Ichimiya, Tet al.Dose relationship of limbic-cortical D2-dopamine receptor occupancy with risperidone. Psychopharmacology (Berlin 2001;154:112114.CrossRefGoogle ScholarPubMed
Yokoi, F, Grunder, G, Biziere, K, Stephane, M, Dogan, AS, Dannals, RFet al.Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacolog 2002;27:248259.CrossRefGoogle Scholar
Youngren, KD, Inglis, FM, Pivirotto, PJ, Jedema, HP, Bradberry, CW, Goldman-Rakic, PSet al.Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus. Neuropsychopharmacolog 1999;20:403412.CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.