Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T18:38:05.511Z Has data issue: false hasContentIssue false

Influence of DAOA and RGS4 genes on the risk for psychotic disorders and their associated executive dysfunctions: A family-based study

Published online by Cambridge University Press:  23 March 2020

J. Soler
Affiliation:
Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
S. Miret
Affiliation:
Servei de Salut Mental, Psiquiatria i Addicions, Hospital Universitari Santa Maria Lleida, Institut de Recerca Biomèdica (IRB), Lleida, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
L. Lázaro
Affiliation:
Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain Servei de Psiquiatria i Psicologia Infantil i Juvenil, Hospital Clínic de Barcelona, Barcelona, Spain Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Departament de Psiquiatria i Psicobiologia Clínica, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
M. Parellada
Affiliation:
Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain Servicio de Psiquiatría del Niño y del Adolescente, Departamento de Psiquiatría, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón (IISGM), Madrid, Spain
M. Martín
Affiliation:
Unitat de Recerca i Àrea d’Adolescents del Complex Assistencial en Salut Mental, Benito Menni, Sant Boi de Llobregat, Spain
S. Lera-Miguel
Affiliation:
Servei de Psiquiatria i Psicologia Infantil i Juvenil, Hospital Clínic de Barcelona, Barcelona, Spain
A. Rosa
Affiliation:
Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
M. de Castro-Catala
Affiliation:
Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
M.J. Cuesta
Affiliation:
Servicio de Psiquiatría, Complejo Hospitalario de Navarra, Pamplona, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
L. Fañanás
Affiliation:
Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
M.O. Krebs
Affiliation:
Inserm, UMR 894, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, PRES Sorbonne Paris CitéParis, 75014, France Service Hospitalo-Universitaire, Faculté de Médecine, Université Paris Descartes, Hôpital Sainte-AnneParis, 75014, France GDR3557, Institut de PsychiatrieParis, 75014, France
M. Fatjó-Vilas*
Affiliation:
Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
*
*Corresponding author. Unitat d’Antropologia, Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona. Av. Diagonal 643, 08028 Barcelona, Spain. Tel.: +34 934 021 460. E-mail address: [email protected] (M. Fatjó-Vilas).
Get access

Abstract

Background

Glutamatergic neurotransmission dysfunction has classically been related to the aetiology of psychotic disorders. A substantial polygenic component shared across these disorders has been reported and molecular genetics studies have associated glutamatergic-related genes, such as d-amino acid oxidase activator (DAOA) and regulator of G-protein signalling 4 (RGS4) with the risk for psychotic disorders. Our aims were to examine: (i) the relationship between DAOA and RGS4 and the risk for psychotic disorders using a family-based association approach, and (ii) whether variations in these genes are associated with differences in patients’ cognitive performance.

Methods

The sample comprised 753 subjects (222 patients with psychotic disorders and 531 first-degree relatives). Six SNPs in DAOA and 5 SNPs in RGS4 were genotyped. Executive cognitive performance was assessed with Trail Making Test B (TMT-B) and Wisconsin Card Sorting Test (WCST). Genetic association analyses were conducted with PLINK, using the transmission disequilibrium test (TDT) for the family-based study and linear regression for cognitive performance analyses.

Results

The haplotype GAGACT at DAOA was under-transmitted to patients (P = 0.0008), indicating its association with these disorders. With regards to cognitive performance, the DAOA haplotype GAGGCT was associated with worse scores in TMT-B (P = 0.018) in SZ patients only. RGS4 analyses did not report significant results.

Conclusions

Our findings suggest that the DAOA gene may contribute to the risk for psychotic disorders and that this gene may play a role as a modulator of executive function, probably through the dysregulation of the glutamatergic signalling.

Type
Original article
Copyright
Copyright © European Psychiatric Association 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McGrath, J., Saha, S., Chant, D., Welham, J.Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30: 67–76.CrossRefGoogle Scholar
Perala, J., Suvisaari, J., Saarni, S.I., Kuoppasalmi, K., Isometsa, E., Pirkola, S., et al.Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry; 2007; 64: 19–28.CrossRefGoogle Scholar
Murray, R.M., Sham, P., Van Os, J., Zanelli, J., Cannon, M., McDonald, C.A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr Res 2004; 71: 405–16.CrossRefGoogle ScholarPubMed
Hill, S.K., Reilly, J.L., Keefe, R.S.E., Gold, J.M., Bishop, J.R., Gershon, E.S., et al.Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. Am J Psychiatry; 2013; 170: 1275–84.CrossRefGoogle ScholarPubMed
Lichtenstein, P., Yip, B.H., Björk, C., Pawitan, Y., Cannon, T.D., Sullivan, P.F., et al.Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet; 2009; 373: 234–9.CrossRefGoogle ScholarPubMed
Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O’Donovan, M.C., Sullivan, P.F., et al.Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature; 2009; 460: 748–52.Google ScholarPubMed
Gratten, J., Wray, N.R., Keller, M.C., Visscher, P.M.Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci 2014; 17: 782–90.CrossRefGoogle ScholarPubMed
Lee, S.H., Ripke, S., Neale, B.M., Faraone, S.V., Purcell, S.M., Perlis, R.H., et al.Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet; 2013; 45: 984–94.Google ScholarPubMed
Tarabeux, J., Kebir, O., Gauthier, J., Hamdan, F.F., Xiong, L., Piton, A., et al.Rare mutations in N-methyl-d-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry 2011;1:e55.CrossRefGoogle Scholar
Stahl, S.M.Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr 2007; 12: 265–8.CrossRefGoogle ScholarPubMed
Owen, M.J., Craddock, N., Jablensky, A.The genetic deconstruction of psychosis. Schizophr Bull 2007; 33: 905–11.CrossRefGoogle Scholar
Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, H., et al.Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A; 2002; 99: 13675–80.CrossRefGoogle Scholar
Hashimoto, K., Fukushima, T., Shimizu, E., Komatsu, N., Watanabe, H., Shinoda, N., et al.Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry; 2003; 60: 572–6.CrossRefGoogle ScholarPubMed
Hashimoto, K., Engberg, G., Shimizu, E., Nordin, C., Lindström, L.H., Iyo, M.Reduced d-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 767–9.CrossRefGoogle ScholarPubMed
Korostishevsky, M., Kaganovich, M., Cholostoy, A., Ashkenazi, M., Ratner, Y., Dahary, D., et al.Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry; 2004; 56: 169–76.CrossRefGoogle ScholarPubMed
Tuominen, H.J., Tiihonen, J., Wahlbeck, K.Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 2005; 72: 225–34.CrossRefGoogle ScholarPubMed
Erdely, H.A., Lahti, R.A., Lopez, M.B., Myers, C.S., Roberts, R.C., Tamminga, C.A., et al.Regional expression of RGS4 mRNA in human brain. Eur J Neurosci; 2004; 19: 3125–8.CrossRefGoogle ScholarPubMed
Mirnics, K., Middleton, F.A., Stanwood, G.D., Lewis, D.A., Levitt, P.Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001; 6: 293–301.CrossRefGoogle Scholar
Erdely, H.A., Tamminga, C.A., Roberts, R.C., Vogel, M.W.Regional alterations in RGS4 protein in schizophrenia. Synapse 2006; 59: 472–9.CrossRefGoogle Scholar
Addington, A.M., Gornick, M., Sporn, A.L., Gogtay, N., Greenstein, D., Lenane, M., et al.Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry; 2004; 55: 976–80.CrossRefGoogle Scholar
Schumacher, J., Jamra, R.A., Freudenberg, J., Becker, T., Ohlraun, S., Otte, A.C.J., et al.Examination of G72 and d-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry; 2004; 9: 203–7.CrossRefGoogle ScholarPubMed
Hattori, E., Liu, C., Badner, J.A., Bonner, T.I., Christian, S.L., Maheshwari, M., et al.Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet; 2003; 72: 1131–40.CrossRefGoogle ScholarPubMed
Chen, X., Dunham, C., Kendler, S., Wang, X., O’Neill, F.A., Walsh, D., et al.Regulator of G-protein signaling 4 (RGS4) gene is associated with schizophrenia in Irish high density families. Am J Med Genet B Neuropsychiatr Genet 2004;129B:23–6.CrossRefGoogle ScholarPubMed
Williams, N.M., Preece, A., Spurlock, G., Norton, N., Williams, H.J., McCreadie, R.G., et al.Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry; 2004; 55: 192–5.CrossRefGoogle Scholar
Cordeiro, Q., Talkowski, M.E., Chowdari, K.V., Wood, J., Nimgaonkar, V., Vallada, H.Association and linkage analysis of RGS4 polymorphisms with schizophrenia and bipolar disorder in Brazil. Genes Brain Behav 2005; 4: 45–50.CrossRefGoogle ScholarPubMed
Müller, D.J., Zai, C.C., Shinkai, T., Strauss, J., Kennedy, J.L.Association between the DAOA/G72 gene and bipolar disorder and meta-analyses in bipolar disorder and schizophrenia. Bipolar Disord 2011; 13: 198–207.CrossRefGoogle Scholar
Gur, R.E., Nimgaonkar, V.L., Almasy, L., Calkins, M.E., Ragland, J.D., Pogue-Geile, M.F., et al.Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. Am J Psychiatry; 2007; 164: 813–9.CrossRefGoogle Scholar
Schulze, K.K., Walshe, M., Stahl, D., Hall, M.H., Kravariti, E., Morris, R., et al.Executive functioning in familial bipolar I disorder patients and their unaffected relatives. Bipolar Disord; 2011; 13: 208–16.CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al.Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry; 1997; 36: 980–8.CrossRefGoogle ScholarPubMed
Andreasen, N.C., Flaum, M., Arndt, S.The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology. Arch Gen Psychiatry 1992; 49: 615–23.CrossRefGoogle ScholarPubMed
Perkins, D.O., Leserman, J., Jarskog, L.F., Graham, K., Kazmer, J., Lieberman, J.A.Characterizing and dating the onset of symptoms in psychotic illness: the Symptom Onset in Schizophrenia (SOS) inventory. Schizophr Res 2000; 44: 1–10.CrossRefGoogle ScholarPubMed
Heaton, R.K., Heaton, R.K.Wisconsin Card Sorting Test: Computer Version – 2. Research Edition Odessa, F.L.: Psychological Assessment Resources, Inc.; 1981.Google Scholar
Reitan, R., Wolfson, D., Reitan, R., Wolfson, D.The Halstead–Reitan neuropsychological test battery Tuscon (AZ): Neuropsychology Press; 1985. 1985.Google Scholar
Barrett, J.C., Fry, B., Maller, J., Daly, M.J.Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–5.CrossRefGoogle ScholarPubMed
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., et al.PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–75.CrossRefGoogle ScholarPubMed
Schaid, D.J.Transmission disequilibrium, family controls, and great expectations. Am J Hum Genet 1998; 63: 935–41.CrossRefGoogle ScholarPubMed
Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., et al.An integrated map of genetic variation from 1092 human genomes. Nature 2012; 491: 56–65.Google ScholarPubMed
Lin, P.-I., Vance, J.M., Pericak-Vance, M.A., Martin, E.R.No gene is an island: the flip-flop phenomenon. Am J Hum Genet 2007; 80: 531–8.CrossRefGoogle ScholarPubMed
Clarke, G.M., Cardon, L.R.Aspects of observing and claiming allele flips in association studies. Genet Epidemiol 2010; 34: 266–74.Google ScholarPubMed
Ma, J., Qin, W., Wang, X.Y., Guo, T.W., Bian, L., Duan, S.W., et al.Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations. Mol Psychiatry 2006; 11: 479–87.CrossRefGoogle ScholarPubMed
Bass, N.J., Datta, S.R., McQuillin, A., Puri, V., Choudhury, K., Thirumalai, S., et al.Evidence for the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia. Behav Brain Funct 2009;5:28.CrossRefGoogle ScholarPubMed
Hartz, S.M., Ho, B.-C., Andreasen, N.C., Librant, A., Rudd, D., Epping, E.A., et al.G72 influences longitudinal change in frontal lobe volume in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010;153B:640–7.CrossRefGoogle Scholar
Woodward, N.D., Heckers, S.Brain structure in neuropsychologically defined subgroups of schizophrenia and psychotic bipolar disorder. Schizophr Bull 2015; 41: 1349–59.CrossRefGoogle ScholarPubMed
Haznedar, M.M., Roversi, F., Pallanti, S., Baldini-Rossi, N., Schnur, D.B., Licalzi, E.M., et al.Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biol Psychiatry 2005; 57: 733–42.CrossRefGoogle ScholarPubMed
Schultz, C.C., Nenadic, I., Koch, K., Wagner, G., Roebel, M., Schachtzabel, C., et al.Reduced cortical thickness is associated with the glutamatergic regulatory gene risk variant DAOA Arg30Lys in schizophrenia. Neuropsychopharmacology 2011; 36: 1747–53.CrossRefGoogle Scholar
Opgen-Rhein, C., Lencz, T., Burdick, K.E., Neuhaus, A.H., DeRosse, P., Goldberg, T.E., et al.Genetic variation in the DAOA gene complex: impact on susceptibility for schizophrenia and on cognitive performance. Schizophr Res 2008; 103: 169–77.CrossRefGoogle ScholarPubMed
Donohoe, G., Morris, D.W., Robertson, I.H., McGhee, K.A., Murphy, K., Kenny, N., et al.DAOA ARG30LYS and verbal memory function in schizophrenia. Mol Psychiatry 2007; 12: 795–6.CrossRefGoogle Scholar
Goldberg, T.E., Straub, R.E., Callicott, J.H., Hariri, A., Mattay, V.S., Bigelow, L., et al.The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 2006; 31: 2022–32.CrossRefGoogle Scholar
Sánchez-Cubillo, I., Periáñez, J.A., Adrover-Roig, D., Rodríguez-Sánchez, J.M., Ríos-Lago, M., Tirapu, J., et al.Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc 2009; 15: 438–50.CrossRefGoogle ScholarPubMed
Kurtz, M.M., Gerraty, R.T.A meta-analytic investigation of neurocognitive deficits in bipolar illness: profile and effects of clinical state. Neuropsychology 2009; 23: 551–62.CrossRefGoogle ScholarPubMed
Fioravanti, M., Bianchi, V., Cinti, M.Cognitive deficits in schizophrenia: an updated metanalysis of the scientific evidence. BMC Psychiatry 2012;12:64.CrossRefGoogle ScholarPubMed
Millan, M.J., Agid, Y., Brüne, M., Bullmore, E.T., Carter, C.S., Clayton, N.S., et al.Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 2012; 11: 141–68.CrossRefGoogle ScholarPubMed
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S.E., Liewald, D., et al.Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry 2011; 16: 996–1005.CrossRefGoogle ScholarPubMed
Barnes, J.J.M., Dean, A.J., Nandam, L.S., O’Connell, R.G., Bellgrove, M.A.The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry 2011;69:e127–43.CrossRefGoogle ScholarPubMed
Chowdari, K.V., Mirnics, K., Semwal, P., Wood, J., Lawrence, E., Bhatia, T., et al.Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–80.CrossRefGoogle Scholar
Rizig, M.A., McQuillin, A., Puri, V., Choudhury, K., Datta, S., Thirumalai, S., et al.Failure to confirm genetic association between schizophrenia and markers on chromosome 1q23.3 in the region of the gene encoding the regulator of G-protein signaling 4 protein (RGS4). Am J Med Genet B Neuropsychiatr Genet 2006;141B:296–300.CrossRefGoogle Scholar
Sobell, J.L., Richard, C., Wirshing, D.A., Heston, L.L.Failure to confirm association between RGS4 haplotypes and schizophrenia in Caucasians. Am J Med Genet B Neuropsychiatr Genet 2005;139B:23–7.CrossRefGoogle ScholarPubMed
Réthelyi, J.M., Bakker, S.C., Polgár, P., Czobor, P., Strengman, E., Pásztor, P.I., et al.Association study of NRG1, DTNBP1, RGS4, G72/G30, and PIP5K2A with schizophrenia and symptom severity in a Hungarian sample. Am J Med Genet B Neuropsychiatr Genet 2010;153B:792–801.Google Scholar
Ishiguro, H., Horiuchi, Y., Koga, M., Inada, T., Iwata, N., Ozaki, N., et al.RGS4 is not a susceptibility gene for schizophrenia in Japanese: association study in a large case-control population. Schizophr Res 2007; 89: 161–4.CrossRefGoogle ScholarPubMed
Jönsson, E.G., Saetre, P., Nyholm, H., Djurovic, S., Melle, I., Andreassen, O.A., et al.Lack of association between the regulator of G-protein signaling 4 (RGS4) rs951436 polymorphism and schizophrenia. Psychiatr Genet 2012; 22: 263–4.CrossRefGoogle Scholar
Stefanis, N.C., Trikalinos, T.A., Avramopoulos, D., Smyrnis, N., Evdokimidis, I., Ntzani, E.E., et al.Association of RGS4 variants with schizotypy and cognitive endophenotypes at the population level. Behav Brain Funct 2008;4:46.CrossRefGoogle ScholarPubMed
Kattoulas, E., Stefanis, N.C., Avramopoulos, D., Stefanis, C.N., Evdokimidis, I., Smyrnis, N.Schizophrenia-related RGS4 gene variations specifically disrupt pre-frontal control of saccadic eye movements. Psychol Med 2012; 42: 757–67.CrossRefGoogle Scholar
Prasad, K.M., Almasy, L., Gur, R.C., Gur, R.E., Pogue-Geile, M., Chowdari, K.V., et al.RGS4 polymorphisms associated with variability of cognitive performance in a family-based schizophrenia sample. Schizophr Bull 2010; 36: 983–90.CrossRefGoogle Scholar
So, H.-C., Chen, R.Y.L., Chen, E.Y.H., Cheung, E.F.C., Li, T., Sham, P.C.An association study of RGS4 polymorphisms with clinical phenotypes of schizophrenia in a Chinese population. Am J Med Genet B Neuropsychiatr Genet 2008;147B:77–85.CrossRefGoogle ScholarPubMed
Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., et al.A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–9.CrossRefGoogle ScholarPubMed
Bernstein, B.E., Birney, E., Dunham, I., Green, E.D., Gunter, C., Snyder, M.An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.Google Scholar
Ward, L.D., Kellis, M.HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012;40:D930–4.CrossRefGoogle ScholarPubMed
Keefe, R.S.E., Bilder, R.M., Davis, S.M., Harvey, P.D., Palmer, B.W., Gold, J.M., et al.Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 2007; 64: 633–47.CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.