Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T14:53:32.412Z Has data issue: false hasContentIssue false

The structure of the corpus callosum in obsessive compulsive disorder

Published online by Cambridge University Press:  15 April 2020

M. Di Paola*
Affiliation:
IRCCS Santa Lucia Foundation, Laboratory of Clinical and Behavioural Neurology, Via Ardeatina 306, 00179Rome, Italy Department of Internal Medicine and Public Health, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67010L’Aquila-Coppito, Italy
E. Luders
Affiliation:
Laboratory of Neuroimaging, Department of Neurology, UCLA School of Medicine, 635 Charles Young Drive South, Los Angles, CA90095, USA
I.A. Rubino
Affiliation:
Neuroscience Department, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133Rome, Italy
A. Siracusano
Affiliation:
Neuroscience Department, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133Rome, Italy
G. Manfredi
Affiliation:
NESMOS Department, Faculty of Medicine and Psychology, University of Rome “Sapienza”, Rome, Italy
P. Girardi
Affiliation:
NESMOS Department, Faculty of Medicine and Psychology, University of Rome “Sapienza”, Rome, Italy
G. Martinotti
Affiliation:
Institute of Psychiatry, Catholic University of Sacred Heart, Rome, Italy
P.M. Thompson
Affiliation:
Laboratory of Neuroimaging, Department of Neurology, UCLA School of Medicine, 635 Charles Young Drive South, Los Angles, CA90095, USA
Y.-Y. Chou
Affiliation:
Laboratory of Neuroimaging, Department of Neurology, UCLA School of Medicine, 635 Charles Young Drive South, Los Angles, CA90095, USA
A.W. Toga
Affiliation:
Laboratory of Neuroimaging, Department of Neurology, UCLA School of Medicine, 635 Charles Young Drive South, Los Angles, CA90095, USA
C. Caltagirone
Affiliation:
IRCCS Santa Lucia Foundation, Laboratory of Clinical and Behavioural Neurology, Via Ardeatina 306, 00179Rome, Italy Neuroscience Department, University of Rome “Tor Vergata”, Via Montpellier, 1, 00133Rome, Italy
G. Spalletta
Affiliation:
IRCCS Santa Lucia Foundation, Laboratory of Clinical and Behavioural Neurology, Via Ardeatina 306, 00179Rome, Italy
*
*Corresponding author. Tel.: +39 06 51501215; fax: +39 06 51501213. E-mail address:[email protected] (M. Di Paola).
Get access

Abstract

Abnormal brain connectivity has recently been reported in obsessive compulsive disorder (OCD). However, structural differences in the corpus callosum (CC), the primary structure connecting the two hemispheres, have not been extensively studied. In this case-control study, we recruited 30 patients with OCD and 30 healthy control subjects carefully matched for age, sex and handedness. Combining surface-based mesh-modeling and voxel-based morphometry (VBM), we compared callosal thickness and white matter (WM) density in patients and controls. We investigated associations between callosal structure and cortical gray matter (GM) density, and we related CC measures to neuropsychological performance in OCD. OCD patients showed small anterior and posterior callosal regions compared to healthy control subjects. In the OCD group, anterior callosal thickness was positively correlated with GM density of the right mid-dorso-lateral prefrontal (BA 9/46) area, while posterior callosal thickness was positively correlated with GM density in the left supramarginal gyrus (BA 40). Moreover, posterior callosal WM density was positively correlated with verbal memory, visuo-spatial memory, verbal fluency, and visuo-spatial reasoning performances. Callosal attributes were related to GM density in cortical areas innervated by the CC, and were also related to performance in cognitive domains impaired in the disorder. The CC may therefore be integrally involved in OCD.

Type
Original article
Copyright
Copyright © 2012 Elsevier Masson SAS

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboitiz, FScheibel, ABFisher, RSZaidel, EFiber composition of the human corpus callosum. Brain Res 1992;598:143153.CrossRefGoogle ScholarPubMed
APA, Diagnostic and statistical manual of mental disorders. (IV-TR) 4th ed. - text revisedWashington: American Psychiatric Press; 2000.Google Scholar
Ashburner, JFriston, KJVoxel-based morphometry: the methods. Neuroimage 2000;11:805821.CrossRefGoogle ScholarPubMed
Beaulieu, CThe basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 2002;15:435455.CrossRefGoogle ScholarPubMed
Benjamini, YHochberg, YControlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc 1995;57:289300.Google Scholar
Bora, EHarrison, BJFornito, ACocchi, LPujol, JFontenelle, LF, et al.White matter microstructure in patients with obsessive compulsive disorder. J Psychiatry Neurosci 2011;36:4246.CrossRefGoogle ScholarPubMed
Borkowsky, JGBenton, ALSpreen, OWord fluency and brain damage. Neuropsychologia 1967;5:135140.CrossRefGoogle Scholar
Boroojerdi, BTopper, RFoltys, HMeincke, UTranscallosal inhibition and motor conduction studies in patients with schizophrenia using transcranial magnetic stimulation. Br J Psychiatry 1999;175:375379.CrossRefGoogle ScholarPubMed
Breiter, HCFilipek, PAKennedy, DNBaer, LPitcher, DAOlivares, MJ, et al.Retrocallosal white matter abnormalities in patients with obsessive compulsive disorder. Arch Gen Psychiatry 1994;51:663664.Google ScholarPubMed
Caltagirone, CGainotti, GMasullo, CMiceli, GValidity of some neuropsychological tests in the assessment of mental deterioration. Acta Psychiatr Scand 1979;60:5056.CrossRefGoogle ScholarPubMed
Christian, CJLencz, TRobinson, DGBurdick, KEAshtari, MMalhotra, AK, et al.Gray matter structural alterations in obsessive compulsive disorder: relationship to neuropsychological functions. Psychiatry Res 2008;164:123131.CrossRefGoogle ScholarPubMed
Cummings, JLFrontal-subcortical circuits and human behavior. Arch Neurol 1993;50:873880.CrossRefGoogle ScholarPubMed
Cummings, JLAnatomic and behavioral aspects of frontal-subcortical circuits. Ann N Y Acad Sci 1995;769:113.CrossRefGoogle ScholarPubMed
Deichmann, RSchwarzbauer, CTurner, ROptimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3T. Neuroimage 2004;21:757767.CrossRefGoogle Scholar
Di Paola, MDi Iulio, FCherubini, ABlundo, CCasini, ARSancesario, G, et al.When, where and how corpus callosum changes in MCI and AD: a multimodal MRI study. Neurology 2010;74:11361142.CrossRefGoogle Scholar
Di Paola, MLuders, EDi Iulio, FVarsi, AESancesario, GPassafiume, D, et al.Callosal atrophy in mild cognitive impairment and Alzheimer's disease: different effects in different stages. Neuroimage 2010;49:141149.CrossRefGoogle ScholarPubMed
Evans, DWLewis, MDIobst, EThe role of the orbito-frontal cortex in normally developing compulsive-like behaviors and obsessive compulsive disorder. Brain Cogn 2004;55:220234.CrossRefGoogle Scholar
First, MBGibbon, MSpitzer, RLWilliams, JBWBenjamin, LSStructured clinical interview for DSM-IV axis II personality disorders, (SCID-II). Washington, D.C: American Psychiatric Press, Inc; 1997.Google Scholar
First, MBSpitzer, RLGibbon, MWilliams, JBWStructured clinical interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P) New York: Biometrics Research, New York State Psychiatric Institute; 2002.Google Scholar
First, MBSpitzer, RLGibbon, MWilliams, JBWStructured clinical interview for DSM-IV-TR axis I disorders, research version, non-patient edition (SCID-I/NP) New York: Biometrics Research, New York State Psychiatric Institute; 2002.Google Scholar
Friston, KJWorsley, KJFrackowiak, RSJMazziotta, JCC. EA. Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1993;1:210220.CrossRefGoogle Scholar
Gainotti, GMiceli, GCaltagirone, CConstructional apraxia in left brain-damaged patients a planning disorders?. Cortex 1977;13:109118.CrossRefGoogle Scholar
Garibotto, VScifo, PGorini, AAlonso, CRBrambati, SBellodi, L, et al.Disorganization of anatomical connectivity in obsessive compulsive disorder: a multiparameter diffusion tensor imaging study in a subpopulation of patients. Neurobiol Dis 2010;37:468476.CrossRefGoogle Scholar
Good, CDJohnsrude, ISAshburner, JHenson, RNFriston, KJFrackowiak, RSA voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:2136.CrossRefGoogle ScholarPubMed
Goodman, WKPrice, LHRasmussen, SAMazure, CFleischmann, RLHill, CL, et al.The Yale-Brown obsessive compulsive scale. I. Development, use, and reliability. Arch Gen Psychiatry 1989;46:10061011.CrossRefGoogle ScholarPubMed
Huang, HZhang, JJiang, HWakana, SPoetscher, LMiller, MI, et al.DTI tractography based parcellation of white matter: application to the midsagittal morphology of corpus callosum. Neuroimage 2005;26:195205.CrossRefGoogle Scholar
Hugdahl, KThe corpus callosum: more than a passive ‘corpus’. Behav Brain Sci 1998;3:335.CrossRefGoogle Scholar
Jenike, MABreiter, HCBaer, LKennedy, DNSavage, CROlivares, MJ, et al.Cerebral structural abnormalities in obsessive compulsive disorder. A quantitative morphometric magnetic resonance imaging study. Arch Gen Psychiatry 1996;53:625632.CrossRefGoogle ScholarPubMed
Koprivova, JHoracek, JTintera, JPrasko, JRaszka, MIbrahim, I, et al.Medial frontal and dorsal cortical morphometric abnormalities are related to obsessive compulsive disorder. Neurosci Lett 2009;464:6266.CrossRefGoogle ScholarPubMed
Li, FHuang, XYang, YLi, BWu, QZhang, T, et al.Microstructural brain abnormalities in patients with obsessive compulsive disorder: diffusion tensor MR imaging study at 3.0T. Radiology 2011;260:216223.CrossRefGoogle Scholar
Luders, ENarr, KLZaidel, EThompson, PMJancke, LToga, AWParasagittal asymmetries of the corpus callosum. Cereb Cortex 2006;16:346354.CrossRefGoogle ScholarPubMed
Luders, ENarr, KLBilder, RMThompson, PMSzeszko, PRHamilton, L, et al.Positive correlations between corpus callosum thickness and intelligence. Neuroimage 2007;37:14571464.CrossRefGoogle ScholarPubMed
Mataix-Cols, DRosario-Campos, MCLeckman, JFA multidimensional model of obsessive compulsive disorder. Am J Psychiatry 2005;162:228238.CrossRefGoogle ScholarPubMed
Milner, BDisorders of learning and memory after temporal lobe lesions in man. Clin Neurosurg 1972;19:421446.CrossRefGoogle ScholarPubMed
Nelson, HEA modified card sorting test sensitive to frontal lobe defects. Cortex 1976;2:313324.CrossRefGoogle Scholar
Oh, JSJang, JHJung, WHKang, DHChoi, JSChoi, CH, et al.Reduced fronto-callosal fiber integrity in unmedicated OCD patients: a diffusion tractography study. Hum Brain Mapp 201110.1002/hbm.21372 [Epub ahead of print]Google ScholarPubMed
Oldfield, RCThe assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97113.CrossRefGoogle ScholarPubMed
Osterrieth, PALe test de copie d’une figure complexe. Arch Psychol 1944;30:206356.Google Scholar
Park, HYPark, JSKim, SHJang, JHJung, WHChoi, JS, et al.Midsagittal structural differences and sexual dimorphism of the corpus callosum in obsessive compulsive disorder. Psychiatry Res 2011;192:147153.CrossRefGoogle ScholarPubMed
Pierpaoli, CBasser, PJToward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996;36:893906.CrossRefGoogle Scholar
Raven, JCProgressive Matrices. Sets A, Ab, B: Bords and Book forms London: Lewis; 1947.Google Scholar
Rey, AMémorisation d’une série de 15 mots en 5 répétitions. In: Rey, AL’examen clinique en psycologie Paris: Presses Universitaires des France; 1958.Google Scholar
Rosenberg, DRKeshavan, MSDick, ELBagwell, WWMacMaster, FPBirmaher, BCorpus callosal morphology in treatment-naive pediatric obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 1997;21:12691283.CrossRefGoogle ScholarPubMed
Saito, YNobuhara, KOkugawa, GTakase, KSugimoto, THoriuchi, M, et al.Corpus callosum in patients with obsessive compulsive disorder: diffusion tensor imaging study. Radiology 2008;246:536542.CrossRefGoogle ScholarPubMed
Schmahmann, JPandya, DFiber pathways of the brain New York: Oxford University Press; 2006.CrossRefGoogle Scholar
Sled, JGZijdenbos, APEvans, ACA non-parametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:8797.CrossRefGoogle Scholar
Tekin, SCummings, JLFrontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 2002;53:647654.CrossRefGoogle ScholarPubMed
Valente, A.A. Jr.Miguel, ECCastro, CCAmaro, E Jr.Duran, FLBuchpiguel, CA, et al.Regional gray matter abnormalities in obsessive compulsive disorder: a voxel-based morphometry study. Biol Psychiatry 2005;58:479487.CrossRefGoogle ScholarPubMed
Wilson, BAClare, LYoung, AWHodges, JRKnowing where and knowing what: a double dissociation. Cortex 1997;33:529541.CrossRefGoogle ScholarPubMed
Worsley, KJMarrett, SNeelin, PVandal, ACFriston, KJEvans, ACA unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 1996;4:5873.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Worsley, KJAndermann, MKoulis, TMacDonald, DEvans, ACDetecting changes in nonisotropic images. Hum Brain Mapp 1999;8:98101.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Yassa, MAStark, CEA quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. Neuroimage 2009;44:319327.CrossRefGoogle ScholarPubMed
Yoo, SYJang, JHShin, YWKim, DJPark, HJMoon, WJ, et al.White matter abnormalities in drug-naive patients with obsessive compulsive disorder: a diffusion tensor study before and after citalopram treatment. Acta Psychiatr Scand 2007;116:211219.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Di Paola et al. supplementary material

Supplementary materials

Download Di Paola et al. supplementary material(Image)
Image 2.9 MB
Submit a response

Comments

No Comments have been published for this article.