Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T14:23:10.412Z Has data issue: false hasContentIssue false

Schizophrenia, antipsychotics and diabetes: Genetic aspects

Published online by Cambridge University Press:  16 April 2020

F. Bellivier*
Affiliation:
Department of Psychiatry, CHU Henri-Mondor, 94010Créteil cedex, France Inserm U513, faculté de médecine, 94010Creted cedex, France
*
E-mail address: [email protected] (F. Bellivier).
Get access

Abstract

The relatively high comorbidity of type 2 diabetes and schizophrenia may suggest a shared biological susceptibility to these twoconditions. Family studies have demonstrated an increased risk of diabetes in unaffected relatives of patients with schizophrenia, consistent with a heritable susceptibility trait. Linkage analyses have identified several loci that are associated with schizophrenia and some of these, notably those on chromosomes 2p22.1-p13.2 and 6g21-824.1 have also been observed in linkage studies in type 2 diabetes. In addition, the dopamine D5 receptor on chromosome 5 and the tyrosine hydroxylase gene on chromosome 11 have both been suggested as candidate genes in schizophrenia and may also be implicated in susceptibility to poor glycaemic control. In addition, an increased rate of type II diabetes has been observed in some patients treated with antipsychotics. Potential neurochemical substrates of this effect include the histamine H1 receptor, the 5-HT2C serotonin receptor or the β3 adrenoreceptor. However, the search for a genetic basis to the association between diabetes and schizophrenia is still in its infancy, and much further work needs to be performed, including the systematic screening of all confirmed susceptibility loci and quantitative trait locus mapping of glycaemic control.

Type
Research Article
Copyright
Copyright © European Psychiatric Association 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, D.B.Casey, D.E.Antipsychotic-induced weight gain: a review of the literature. J Clin Psychiatry. 2001; 62Suppl 7: 2231Google ScholarPubMed
Aschauer, H.N.Fischer, G.Isenberg, K.E.Meszaros, K.Willinger, U., et al.No proof of linkage between schizophrenia-related disorders including schizophrenia and chromosome 2g21 region. Eur Arch Psychiatry Clin Neurosci. 1993; 243: 193–8CrossRefGoogle ScholarPubMed
Asherson, P.Mant, R.Williams, N.Cardno, A.Jones, L., et al.A study of chromosome 4p markers and dopamine D5 receptor gene in schizophrenia and bipolar disorder. Mot Psychiatry. 1998; 3: 310–20CrossRefGoogle ScholarPubMed
Blackwood, D.H.He, L.Morris, S.W.McLean, A.Whitton, C., et al.A locus for bipolar affective disorder on chromosome 4p. Nat Genet. 1996; 12: 427–30CrossRefGoogle ScholarPubMed
Blasi, C.Pierelli, F.Rispoli, E.Saponara, M.Vingolo, E.Andreani, D.Wolfram's syndrome: a clinical, diagnostic, and interpretative contribution. Diabetes Care. 1986; 9: 521–8CrossRefGoogle ScholarPubMed
Cheta, D.Dumitrescu, C.Georgescu, M.Cocioaba, G.Lichiardopol, R., et al.A study on the types of diabetes mellitus in first degree relatives of diabetic patients. Diabete Metab. 1990; 16: 11–5Google Scholar
Chiba, M.Suzuki, S.Hinokio, Y.Hirai, M.Satoh, Y., et al.Tyrosine hydroxylase gene microsatellite polymorphism associated with insulin resistance in depressive disorder. Metabolism. 2000; 49: 1145–9CrossRefGoogle ScholarPubMed
Collier, D.A.Barrett, T.G.Curtis, D.Macleod, A.Arranz, M.J., et al.Linkage of Wolfram syndrome to chromosome 4p16.1 and evidence for heterogeneity. Am J Hum Genet. 1996; 59: 855–63Google ScholarPubMed
Collin, G.B.Marshall, J.D.Cardon, L.R.Nishina, P.M.Homozygosity mapping at Alstrom syndrome to chromosome 2p. Hum Mot Genet. 1997; 6: 213–9CrossRefGoogle ScholarPubMed
Crow, T.J.DeLisi, L.E.Johnstone, E.C.Concordance by sex in sibling pairs with schizophrenia is paternally inherited. Evidence for a pseudoautosomal locus. Br J Psychiatry. 1989; 155: 92–7CrossRefGoogle ScholarPubMed
DeLisi, L.E.Shaw, S.H.Crow, T.J.Shields, G.Smith, A.B., et al.A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry. 2002; 159: 803–12CrossRefGoogle ScholarPubMed
Demenais, F.Kanninen, T.Lindgren, C.M.Wiltshire, S.Gaget, S., et al.A meta-analysis of four European genome screens (GIFT Consortium) shows evidence for a novel region on chromosome 17p11.2-q22 linked to type 2 diabetes. Hum Mot Genet. 2003; 12: 1865–73CrossRefGoogle ScholarPubMed
Dynes, J.B.Diabetes in schizophrenia and diabetes in nonpsychotic medical patients. Dis New Syst. 1969; 30: 341–4Google ScholarPubMed
Ekelund, J.Lichtermann, D.Hovatta, I.Ellonen, P.Suvisaari, J., et al.Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mot Genet. 2000; 129: 1049-57CrossRefGoogle Scholar
Eubanks, J.H.Altherr, M.Wagner-McPherson, C.McPherson, J.D.Wasmuth, J.J.Evans, G.A.Localization of the D5 dopamine receptor gene to human chromosome 4p15.1-p15.3, centromeric to the Huntington's disease locus. Genomics. 1992; 12: 510–6CrossRefGoogle ScholarPubMed
Evans, K.L.Lawson, D.Meitinger, T.Blackwood, D.H.Porteous, D.J.Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder. Am J Med Genet. 2000; 96: 158–603.0.CO;2-8>CrossRefGoogle ScholarPubMed
Faraone, S.V.Matise, T.Svrakic, D.Pepple, J.Malaspina, D., et al.Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet. 1998; 81: 290–53.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Freedman, R.Coon, H.Myles-Worsley, M.Orr-Urtreger, A.Olincy, A., et al.Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA. 1997; 94: 587-92CrossRefGoogle ScholarPubMed
Fujisawa, T.Ikegami, H.Yamato, E.Takekawa, K.Nakagawa, Y., et al.Association of Trp64Arg mutation of the beta3-adrenergic-receptor with NIDDM and body weight gain. Diabetologia. 1996; 39: 349–52CrossRefGoogle ScholarPubMed
Goudie, A.J.Halford, J.C.Dovey, T.M.Cooper, G.D.Neill, J.C.H(1)histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology. 2003; 28: 2209CrossRefGoogle ScholarPubMed
Hager, J.Dina, C.Francke, S.Dubois, S.Houari, M., et al.A genomewide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet. 1998; 20: 304–8CrossRefGoogle Scholar
Hovatta, I.Varilo, T.Suvisaari, J.Terwilliger, J.D.Ollikainen, V., et al.A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet. 1999; 65: 1114–24CrossRefGoogle Scholar
Inoue, H.Tanizawa, Y.Wasson, J.Behn, P.Kalidas, K., et al.A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998; 20: 143–8CrossRefGoogle Scholar
Kaneda, Y.Fujii, A.Ohmori, T.The hypothalamic-pituitary-adrenal axis in chronic schizophrenic patients long-term treated with neuroleptics. Prog Neuropsychopharmacol Biol Psychiatry. 2002; 26(5): 935-8CrossRefGoogle ScholarPubMed
Kaufmann, C.A.Suarez, B.Malaspina, D.Pepple, J.Svrakic, D., et al.NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet. 1998; 81: 282–93.0.CO;2-W>CrossRefGoogle ScholarPubMed
Kendler, K.S.Gruenberg, A.M.Kinney, D.K.Independent diagnoses of adoptees and relatives as defined by DSM-III in the provincial and national samples of the Danish Adoption Study of Schizophrenia. Arch Gen Psychiatry. 1994; 51: 456–68CrossRefGoogle ScholarPubMed
Kikuchi, M.Yamada, K.Toyota, T.Itokawa, M.Hattori, E., et al.Two-step association analyses of the chromosome 18p11.2 region in schizophrenia detect a locus encompassing C18orf1. Mol Psychiatry. 2003; 8: 467–9CrossRefGoogle ScholarPubMed
Kopecky, J.Flachs, P.Bardova, K.Branner, P.Prazak, T.Sponarova, J.Modulation of lipid metabolism by energy status of adipocytes:implications for insulin sensitivity. Ann N Y Acad Sci. 2002; 967: 88101CrossRefGoogle ScholarPubMed
Kroeze, W.K.Hufeisen, S.J.Popadak, B.A.Renock, S.M.Steinberg, S.Ernsberger, P.Jayathilake, K.Meltzer, H.Y.Roth, B.L.H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology. 2003; 28: 519–26CrossRefGoogle ScholarPubMed
Lin, M.W.Curtis, D.Williams, N.Arranz, M.Nanko, S., et al.Suggestive evidence for linkage of schizophrenia to markers on chromosome 13814.1-q32. Psychiatr Genet. 1995; 5: 117–26CrossRefGoogle Scholar
Lorenz, W.F.Sugar tolerance in dementia praecox and other mental disorders. Arch Neurol Psychiatry. 1922; 8: 184–96CrossRefGoogle Scholar
McGuffin, P.Tandon, K.Corsico, A.Linkage and association studies of schizophrenia. Curr Psychiatry Rep. 2003; 5: 121–7CrossRefGoogle ScholarPubMed
McIntyre, E.A.Walker, M.Genetics of type 2 diabetes and insulin resistance: knowledge from human studies. Clin Endocrinol. 2002; 57: 303–11CrossRefGoogle ScholarPubMed
Mitchell, B.D.Cole, S.A.Hsueh, W.C.Comuzzie, A.G.Blangero, J., et al.Linkage of serum insulin concentrations to chromosome 3p in Mexican Americans. Diabetes. 2000; 49: 513–6CrossRefGoogle ScholarPubMed
Mukherjee, S.Schur, D.B.Reddy, R.Family history of type 2 diabetes in schizophrenic patients. Lancet. 1989; 333: 495CrossRefGoogle Scholar
Pulver, A.E.Karayiorgou, M.Wolyniec, P.S.Lasseter, V.K.Kasch, L., et al.Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12-q13.1: Part 1. Am J Med Genet. 1994; 54: 3643CrossRefGoogle ScholarPubMed
Pulver, A.E.Lasseter, V.K.Kasch, L.Wolyniec, P.Nestadt, G., et al.Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet. 1995; 60: 252–60CrossRefGoogle ScholarPubMed
Regenold, W.T.Thapar, R.K.Marano, C.Gavirneni, S.Kondapavuluru, P.V.Increased prevalence of type 2 diabetes mellitus among psychiatric inpatients with bipolar I affective and schizoaffective disorders independent of psychotropic drug use. J Affect Disord. 2002; 70: 1926CrossRefGoogle ScholarPubMed
Riley, B.P.Williamson, R.Non-parametric analysis of chromosome 6p24-22 marker data and schizophrenia in southern African Bantuspeaking families. Psychiatr Genet. 1997; 7: 131–2CrossRefGoogle ScholarPubMed
Ryan, M.C.M.Collins, P.Thakore, J.H.Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry. 2003; 160: 284–9CrossRefGoogle ScholarPubMed
Sernyak, M.J.Leslie, D.L.Alarcon, R.D.Losonczy, M.F.Rosenheck, R.Association of diabetes mellitus with use of atypical neuroleptics in the treatment of schizophrenia. Am J Psychiatry. 2002; 159: 561–6CrossRefGoogle ScholarPubMed
Shayegan, D.K.Stahl, S.M.Atypical antipsychotics: matching receptor profile to individual patient's clinical profile. CNS Spear. 2004; 910(Suppl 11): 614CrossRefGoogle Scholar
Sten-Linder, M.Wedell, A.Iselius, L.Efendic, S.Luft, R.Luthman, H.DNA polymorphisms in the human tyrosine hydroxylase/insulin/ insulin-like growth factor II chromosomal region in relation to glucose and insulin responses. Diabetologia. 1993; 36: 2532CrossRefGoogle ScholarPubMed
Tabata, H.Kikuoka, M.Kikuoka, H.Bessho, H.Hirayama, J., et al.Characteristics of diabetes mellitus in schizophrenic patients. J Med Assoc Thai. 1987; 70(Suppl 2): 90-3Google ScholarPubMed
Tecott, L.H.Sun, L.M.Akana, S.F.Strack, A.M.Lowenstein, D.H., et al.Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 1995; 374: 542–6CrossRefGoogle ScholarPubMed
Tejedor-Real, P.Faucon Biguet, N.Dumas, S.Mallet, J.Tyrosine hydroxylase mRNA and protein are down-regulated by chronic clozapine in both the mesocorticolimbic and the nigrostriatal systems. J Neurosci Res 7212003 105-15CrossRefGoogle ScholarPubMed
Torres, R.Leroy, E.Hu, X.Katrivanou, A.Gourzis, P., et al.Mutation screening of the Wolfram syndrome gene in psychiatric patients. Mol Psychiatry. 2001; 6: 3943CrossRefGoogle ScholarPubMed
Wang, S.Sun, C.E.Walczak, C.A.Ziegle, J.S.Kipps, B.R., et al.Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nat Genet. 1995; 10: 41–6CrossRefGoogle ScholarPubMed
Williams, N.M.Rees, M.I.Holmans, P.Norton, N.Cardno, A.G., et al.A two-stage genome scan for schizophrenia susceptibility genes in 196 affected sibling pairs. Hum Mol Genet. 1999; 8: 1729–39CrossRefGoogle ScholarPubMed
Wolford, J.K.Gruber, J.D.Ossowski, V.M.Vozarova, B.Antonio Tataranni, P., et al.A C-reactive protein promoter polymorphism is associated with type 2 diabetes mellitus in Pima Indians. Mol Genet Metab. 2003; 78: 136–44CrossRefGoogle ScholarPubMed
Wolford, J.K.Konheim, Y.L.Colligan, P.B.Bogardus, C.Association of a F479L variant in the cytosolic phospholipase A2 gene (PLA2G4A) with decreased glucose turnover and oxidation rates in Pima Indians. Mol Genet Metab. 2003; 79: 61–6CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.