Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T17:31:11.242Z Has data issue: false hasContentIssue false

Olfactory identification in patients with schizophrenia – the influence of β-endorphin and calcitonin gene-related peptide concentrations

Published online by Cambridge University Press:  03 February 2017

M. Urban-Kowalczyk*
Affiliation:
Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216Lodz, Poland
J. Śmigielski
Affiliation:
Department of Geriatrics, Healthy Aging Research Centre (HARC), Medical University of Lodz, Lodz, Poland
D. Strzelecki
Affiliation:
Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216Lodz, Poland
*
Corresponding author. Tel.: +48 42 675 73 71; fax: +48 42 675 74 03. E-mail address: [email protected] (M. Urban-Kowalczyk).
Get access

Abstract

Background

The relationship between the olfactory system and emotional processing is an area of growing interest in schizophrenia research. Both the orbitofrontal cortex and amygdala are involved in the processing of olfactory information, and olfactory deficits may be also influenced by endogenous opioids and calcitonin gene-related peptide (CGRP), which is probably involved in dopaminergic transmission. However, the relationship between endorphins and dopaminergic transmission has not been fully explored.

Methods

Odor identification performance and valence interaction was evaluated among 50 schizophrenic patients and 50 controls. Schizophrenia symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). All study participants were subjected to the University of Pennsylvania Smell Identification Test (UPSIT), blood β-endorphin (BE) and CGRP measurement.

Results

Insignificantly higher BE concentrations were observed in the patient group, while significantly higher UPSIT scores were seen in controls (mean UPSIT 32.48 vs 26.82). The patients demonstrated significantly more identification errors for pleasant (P = 0.000) and neutral (P = 0.055) odors than for unpleasant odors. Patients with higher BE concentrations made more identification errors concerning pleasant (Rs = −0.292; P = 0.04) and neutral odors (Rs = −0.331; P = 0.019). Although the concentration of CGRP was significantly higher in the patient sample (P < 0.001), no relationship was observed between concentration and UPSIT performance. A strong negative correlation was observed between PANSS N score and UPSIT total score (Rs = −0.646; P = 0.000), between PANSS N score and identification by valence for pleasant and neutral odors (UPSIT n/16: Rs = −0.450, P = 0.001; UPSIT n/15: Rs = −0.586, P = 0.000), and a weak negative correlation between PANSS N score and identification of unpleasant odors (UPSIT n/9: Rs = −0.325, P = 0.021).

Conclusions

Schizophrenic patients present a unique pattern of smell identification characterized by aberrant hedonic ratings for pleasant odors but not unpleasant ones. Individuals with predominant negative symptoms and higher BE concentrations are most able to identify negative odors.

Type
Original article
Copyright
Copyright © European Psychiatric Association 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moberg, P.J.Agrin, R.Gur, R.C.Turetsky, B.I.Doty, R.L.Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology 1999;21:325340.CrossRefGoogle ScholarPubMed
Kopala, L.Clark, C.Hurwitz, T.A.Sex differences in olfactory function in schizophrenia. Am J Psychiatry 1989;146(10):13201322.Google Scholar
Good, K.P.Leslie, R.A.Mc Glone, J.Milliken, H.I.Kopala, L.C.Sex differences in olfactory function in young patients with psychotic disorders. Schizophr Res 2007;97(1–3):97102.CrossRefGoogle ScholarPubMed
Moberg, P.J.Arnold, S.E.Doty, R.L.Kohler, C.Kanes, S.Seigel, S.et al.Impairment of odor hedonics in men with schizophrenia. Am J Psychiatry 2003;160(10):17841789.CrossRefGoogle ScholarPubMed
Doop, M.L.Park, S.On knowing and judging smells: identification and hedonic judgment of odors in schizophrenia. Schizophr Res 2006;81(2–3):317319.CrossRefGoogle Scholar
Kamath, V.Turetsky, B.I.Moberg, P.J.Identification of pleasant, neutral, and unpleasant odors in schizophrenia. Psychiatry Res 2011;187(1–2):3035. http://dx.doi.org/10.1016/j.psychres.2010.12.011.CrossRefGoogle Scholar
Kamath, V.Moberg, P.J.Kohler, C.G.Gur, R.E.Turetsky, B.I.Odor hedonic capacity and anhedonia in schizophrenia and unaffected first-degree relatives of schizophrenia patients. Schizophr Bull 2013;39(1):5967. http://dx.doi.org/10.1093/schbul/sbr050.CrossRefGoogle ScholarPubMed
Kamath, V.Turetsky, B.I.Calkins, M.E.Bilker, W.B.Frishberg, N.Borgmann-Winter, K.et al.The effect of odor valence on olfactory performance in schizophrenia patients, unaffected relatives and at-risk youth. J Psychiatr Res 2013;47(11):16361641. http://dx.doi.org/10.1016/j.jpsychires.2013.07.014.CrossRefGoogle ScholarPubMed
Royet, J.P.Hudry, J.Zald, D.H.Godinot, D.Grégoire, M.C.Lavenne, F.et al.Functional neuroanatomy of different olfactory judgments. Neuroimage 2001;13(3):506519.CrossRefGoogle ScholarPubMed
Phan, K.L.Wager, T.D.Taylor, S.F.Liberzon, I.Functional neuroimaging studies of human emotions. CNS Spectr 2004;9(4):258266.CrossRefGoogle ScholarPubMed
Kjelvik, G.Evensmoen, H.R.Brezova, V.Håberg, A.K.The human brain representation of odor identification. J Neurophysiol 2012;108(2):645657. http://dx.doi.org/10.1152/jn.01036.2010.CrossRefGoogle ScholarPubMed
Keller, A.Malaspina, D.Hidden consequences of olfactory dysfunction: a patient report series. BMC Ear Nose Throat Disord 2013;13:8.CrossRefGoogle ScholarPubMed
Ishizuka, K.Tajinda, K.Colantuoni, C.Morita, M.Winicki, J.Le, C.et al.Negative symptoms of schizophrenia correlate with impairment on the University of Pennsylvania Smell Identification Test. Neurosci Res 2010;66:106110.CrossRefGoogle ScholarPubMed
Kirkpatrick, B.Galderisi, S.Deficit schizophrenia: an update. World Psychiatry 2008;7(3):143147.CrossRefGoogle ScholarPubMed
Pelizza, L.Ferrari, A.Anhedonia in schizophrenia and major depression: state or trait?. Ann Gen Psychiatry 2009;8:22. http://dx.doi.org/10.1186/1744-859X-8-22.CrossRefGoogle ScholarPubMed
Lötsch, J.Darimont, J.Skarke, C.Zimmermann, M.Hummel, T.Geisslinger, G.Effects of the opioid remifentanil on olfactory function in healthy volunteers. Life Sciences 2001;69:22792285.CrossRefGoogle ScholarPubMed
Mansour, A.Khachaturian, H.Lewis, M.E.Akil, H.Watson, S.J.Anatomy of CNS opioid receptors. Trends Neurosci 1988;11:308314.CrossRefGoogle ScholarPubMed
Taha, S.A.Norsted, E.Lee, L.S.Lang, P.D.Lee, B.S.Woolley, J.D.et al.Endogenous opioids encode relative taste preference. Eur J Neurosci 2006;24:12201226.CrossRefGoogle ScholarPubMed
Schultz, W.Reward signaling by dopamine neurons. Neuroscientist 2001;7:293302.CrossRefGoogle ScholarPubMed
Stefano, G.B.Goumon, Y.Casares, F.Cadet, P.Fricchione, G.L.Rialas, C.et al.Endogenous morphine. Trends Neurosci. 2000;23:436442.CrossRefGoogle ScholarPubMed
Volavka, J.Davis, L.G.Ehrlich, Y.H.Endorphins, dopamine, and schizophrenia. Schizophr Bull 1979;5(2):227239.CrossRefGoogle Scholar
Urban-Kowalczyk, M.Pigońska, J.Śmigielski, J.Pain perception in schizophrenia: influence of neuropeptides, cognitive disorders, and negative symptoms. Neuropsychiatr Dis Treat 2015;6:20232031. http://dx.doi.org/10.2147/NDT.S87666.CrossRefGoogle Scholar
Ghatta, S.Nimmagadda, D.Calcitonin gene-related peptide: understanding its role. Indian J Pharmacol 2004;36(5):277283.Google Scholar
Mathé, A.A.Agren, H.Lindström, L.Theodorsson, E.Increased concentration of calcitonin gene-related peptide in cerebrospinal fluid of depressed patients. A possible trait marker of major depressive disorder. Neurosci Lett 1994;5(182):138142.CrossRefGoogle Scholar
Mathé, A.A.Agren, H.Wallin, A.Blennow, K.Calcitonin gene-related peptide and calcitonin in the CSF of patients with dementia and depression: possible disease markers. Prog Neuropsychopharmacol Biol Psychiatry 2002;26:4148.CrossRefGoogle ScholarPubMed
Mathé, A.A.Hertel, S.P.Nomikos, G.G.Gruber, P.A.S.Mathé, E.J.M.The psychotomimetic drugs D-amphetamine and phencyclidine release calcitonin gene-related peptide in the limbic forebrain of the rat. J Neurosci Res 1996;46:316323.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Gruber, S.H.Nomikos, G.G.Mathé, A.A.Dopamine receptor antagonists prevent the D-amphetamine-induced increase in calcitonin gene-related peptide levels in ventral striatum. J Neurosci Res 2001;15(64):606611.CrossRefGoogle Scholar
Doty, R.L.Shaman, P.Dann, M.Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiol Behav 1984;32(3):489502.CrossRefGoogle ScholarPubMed
Crespo-Facorro, B.Paradiso, S.Andreasen, N.C.O’Leary, D.S.Watkins, G.L.Ponto, L.L.et al.Neural mechanisms of anhedonia in schizophrenia: A PET study of response to unpleasant and pleasant odors. JAMA 2001;286:427435.CrossRefGoogle ScholarPubMed
Pause, B.M.Hellmann, G.Goder, R.Aldenhoff, J.B.Ferstl, R.Increased processing speed for emotionally negative odors in schizophrenia. Int J Psychophysiol 2008;70:1622.CrossRefGoogle Scholar
Brewer, W.J.Pantelis, C.Anderson, V.Velakoulis, D.Singh, B.Copolov, D.et al.Stability of olfactory identification deficits in neuroleptic-naive patients with first episode psychosis. Am J Psychiatry 2001;158:107115.CrossRefGoogle ScholarPubMed
Cieslak, K.Walsh-Messinger, J.Stanford, A.Vaez-Azizi, Antonius, D.Harkavy-Friedman, J.et al.Olfactory performance segregates effects of anhedonia and anxiety on social function in patients with schizophrenia. J Psychiatry Neurosci 2015;40(4):140268. http://dx.doi.org/10.1503/jpn.140268.CrossRefGoogle ScholarPubMed
Liu, Z.Tam, W.C.Xie, Y.Zhao, J.The relationship between regional cerebral blood flow and the Wisconsin Card Sorting Test in negative schizophrenia. Psychiatry Clin Neurosci 2002;56(1):37.CrossRefGoogle ScholarPubMed
Namiki, C.Hirao, K.Yamada, M.Hanakawa, T.Fukuyama, H.Hayashi, T.et al.Impaired facial emotion recognition and reduced amygdalar volume in schizophrenia. Psychiatry Res 2007;156(1):2332.CrossRefGoogle Scholar
Staal, W.G.Hijman, R.Hulshoff Pol, H.E.Kahn, R.S.Neuropsychological dysfunctions in siblings discordant for schizophrenia. Psychiatry Res 2000;95(3):227235.CrossRefGoogle Scholar
Zald, D.H.Pardo, J.V.Emotion, olfaction, and the human amygdale: amygdale activation during aversive olfactory stimulation. Proc Natl Acad Sci USA 2002;99:24502454.CrossRefGoogle Scholar
Soudry, Y.Lemogne, C.Malinvaud, D.Consoli, S.M.Bonfils, P.Olfactory system and emotion: common substrates. Eur Ann Otorhinolaryngol Head Neck Dis 2011;128(1):1823. http://dx.doi.org/10.1016/j.anorl.2010.09.007.CrossRefGoogle ScholarPubMed
Hall, J.Whalley, H.C.McKirdy, J.W.Romaniuk, L.McGonigle, D.McIntosh, A.M.et al.Overactivation of fear systems to neutral faces in schizophrenia. Biol Psychiatry 2008;64(1):7073. http://dx.doi.org/10.1016/j.biopsych.2007.12.014.CrossRefGoogle Scholar
Kamath, V.Bedwell, J.S.Compton, M.T.Is the odour identification deficit in schizophrenia influenced by odour hedonics?. Cogn Neuropsychiatry 2011;16(5):448460. http://dx.doi.org/10.1080/13546805.2011.552561.CrossRefGoogle ScholarPubMed
Angelucci, F.Gruber, S.H.Mathé, A.A.A pilot study of rat brain regional distribution of calcitonin, katacalcin and calcitonin gene-related peptide before and after antipsychotic treatment. Neuropeptides 2001;35:285291.CrossRefGoogle ScholarPubMed
Angelucci, F.Gruber, S.H.Caltagirone, C.Mathé, A.A.Differential effects of olanzapine, haloperidol and risperidone on calcitonin gene-related peptide in the rat brain. Neuropeptides 2008;42:535541.CrossRefGoogle ScholarPubMed
Laux-Biehlmann, A.Mouheiche, J.Vérièpe, J.Goumon, Y.Endogenous morphine and its metabolites in mammals: history, synthesis, localization and perspectives. Neuroscience 2013;13(233):95117.CrossRefGoogle Scholar
Urban-Kowalczyk, M.Śmigielski, J.Strzelecki, D.Comparison of beta-endorphin and CGRP levels before and after treatment for severe schizophrenia. Neuropsychiatr Dis Treat 2016;12:863868. http://dx.doi.org/10.2147/NDT.S101647.CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.