Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T22:36:03.212Z Has data issue: false hasContentIssue false

Diazepam and Jacobson's Progressive Relaxation Show Similar Attenuating Short-Term Effects on Stress-Related Brain Glucose Consumption

Published online by Cambridge University Press:  15 April 2020

P. Pifarré*
Affiliation:
Nuclear Medicine Department, CRC-Hospital Quiron, Departament Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
M. Simó
Affiliation:
Hospital Universitari de la Vall d’Hebron, Nuclear Medicine Department, Departament de Medicina, Universitat Autònoma de Barcelona, (UAB), Barcelona, Spain
J.-D. Gispert
Affiliation:
Pasqual Maragall Foundation, Neuroimaing Unit, Barcelona, Spain
P. Plaza
Affiliation:
Nuclear Medicine Department, CRC-Hospital Quiron, Barcelona, Spain
A. Fernández
Affiliation:
Nuclear Medicine Department, Hospital de Sant Pau. Universitat Autònoma de Barcelona, Barcelona, Spain
J. Pujol
Affiliation:
MRI Research Unit, CRC Mar, Hospital del Mar, Barcelona, Spain, Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
*
*Corresponding author. E-mail address:[email protected] (P. Pifarré).
Get access

Abstract

A non-pharmacological method to reduce anxiety is “progressive relaxation” (PR). The aim of the method is to reduce mental stress and associated mental processes by means of progressive suppression of muscle tension. The study was addressed to evaluate changes in brain glucose metabolism induced by PR in patients under a stressing state generated by a diagnostic medical intervention. The effect of PR was compared to a dose of sublingual diazepam, with the prediction that both interventions would be associated with a reduction in brain metabolism. Eighty-four oncological patients were assessed with 18F-fluorodeoxyglucose-positron emission tomography. Maps of brain glucose distribution from 28 patients receiving PR were compared with maps from 28 patients receiving sublingual diazepam and with 28 patients with no treatment intervention. Compared to reference control subjects, the PR and diazepam groups showed a statistically significant, bilateral and generalized cortical hypometabolism. Regions showing the most prominent changes were the prefrontal cortex and anterior cingulate cortex. No significant differences were identified in the direct comparison between relaxation technique and sublingual diazepam. Our findings suggest that relaxation induced by a physical/psychological procedure can be as effective as a reference anxiolytic in reducing brain activity during a stressful state.

Type
Original article
Copyright
Copyright © Elsevier Masson SAS 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Tel.: +0034935540320.

b

Tel.: +0034932746122.

c

Tel.: +0034933550420.

References

Ableitner, A., Wüster, M., Herz, A.Specific changes in local cerebral glucose utilization in the rat brain induced by acute and chronic diazepam. Brain Res 1985;359 :4956.CrossRefGoogle ScholarPubMed
Bishop, S., Duncan, J., Brett, M., Lawrence, A.D.Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 2004;7 :184188.CrossRefGoogle ScholarPubMed
Brefczynski-Lewis, J.A., Lutz, A., Schaefer, H.S., Levinson, D.B., Davidson, R.J.Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci U S A 2007;104 :1148311488.CrossRefGoogle ScholarPubMed
Carlsson, C., Hgerdal, M., Kaasik, A.E., Siesjö, B.K.The effects of diazepam on cerebral blood flow and oxygen consumption in rats and its synergistic interaction with nitrous oxide. Anesthesiology 1976;45 :319325.CrossRefGoogle ScholarPubMed
Conrad, A., Roth, W.T.Muscle relaxation therapy for anxiety disorders: it works but how?. Anxiety Disord 2007;21 :243264.CrossRefGoogle Scholar
de Wit, H., Metz, J., Wagner, N., Cooper, M.Effects of diazepam on cerebral metabolism and mood in normal volunteers. Neuropsychopharmacology 1991;5 :3341.Google ScholarPubMed
Dickenson, J., Berkman, E.T., Arch, J., Lieberman, M.D.Neural correlates of focused attention during a brief mindfulness induction. Soc Cogn Affect Neurosci 2013;8 :4047.CrossRefGoogle ScholarPubMed
Flory, N., Lang, E.V.Distress in the radiology waiting room. Radiology 2011;260 :166173.CrossRefGoogle ScholarPubMed
Foster, N.L., VanDerSpek, A.F., Aldrich, M.S., Berent, S., Hichwa, R.H., Sackellares, J.C., et al.The effect of diazepam sedation on cerebral glucose metabolism in Alzheimer's disease as measured using positron emission tomography. J Cereb Blood Flow Metab 1987;7 :415420.CrossRefGoogle ScholarPubMed
Gay, M.C., Philippot, P., Luminet, O.Differential effectiveness of psychological interventions for reducing osteoarthritis pain: a comparison of Erikson [correction of Erickson] hypnosis and Jacobson relaxation. Eur J Pain 2002;6 :116.CrossRefGoogle ScholarPubMed
Gispert, J.D., Pascau, J., Reig, S., Martínez-Lázaro, R., Molina, V., García-Barreno, P., et al.Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. Neuroimage 2003;19 :601612.CrossRefGoogle ScholarPubMed
González-Pardo, H., Conejo, N.M., Arias, J.L.Oxidative metabolism of limbic structures after acute administration of diazepam, alprazolam and zolpidem. Prog Neuropsychopharmacol Biol Psychiatry 2006;30 :10201026.CrossRefGoogle ScholarPubMed
Grover, N., Kumaraiah, V., Prasadrao, P.S., D'souza, G.Cognitive behavioural intervention in bronchial asthma. J Assoc Physicians India 2002;50 :896900.Google ScholarPubMed
Günther, V., Mur, E., Kinigadner, U., Miller, C.Fibromyalgia: the effect of relaxation and hydrogalvanic bath therapy on the subjective pain experience. Clin Rheumatol 1994;13 :573578.CrossRefGoogle ScholarPubMed
Haag, G., Weinzierl, R., Thoden, U., Niederberger, U.The “Freiburg Migraine Study”. Schmerz 1993;7 :298303.CrossRefGoogle Scholar
Herzog, H., Lele, V.R., Kuwert, T., Langen, K.J., Rota Kops, E., Feinendegen, L.E.Changed pattern of regional glucose metabolism during yoga meditative relaxation. Neuropsychobiology 1990–1991;23 :182187.CrossRefGoogle Scholar
Hölzel, B.K., Ott, U., Gard, T., Hempel, H., Weygandt, M., Morgen, K., et al.Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc Cogn Affect Neurosci 2008;3 :5561.CrossRefGoogle ScholarPubMed
Jang, J.H., Jung, W.H., Kang, D.H., Byun, M.S., Kwon, S.J., Choi, C.H., et al.Increased default mode network connectivity associated with meditation. Neurosci Lett 2011;487 :358362.CrossRefGoogle ScholarPubMed
Khalsa, D.S., Amen, D., Hanks, C., Money, N., Newberg, A.Cerebral blood flow changes during chanting meditation. Nucl Med Commun 2009;30 :956961.CrossRefGoogle ScholarPubMed
Kilpatrick, L.A., Suyenobu, B.Y., Smith, S.R., Bueller, J.A., Goodman, T., Creswell, J.D., et al.Impact of Mindfulness-Based Stress Reduction training on intrinsic brain connectivity. Neuroimage 2011;56 :290298.CrossRefGoogle ScholarPubMed
Laurie, D.J., Pratt, J.A.Local cerebral glucose utilization following subacute and chronic diazepam pretreatment: differential tolerance. Brain Res 1989;504 :101111.CrossRefGoogle ScholarPubMed
Lazar, S.W., Bush, G., Gollub, R.L., Fricchione, G.L., Khalsa, G., Benson, H.Functional brain mapping of the relaxation response and meditation. Neuroreport 2000;11 :15811585.CrossRefGoogle ScholarPubMed
Lazar, S.W., Kerr, C.E., Wasserman, R.H., Gray, J.R., Greve, D.N., Treadway, M.T., et al.Meditation experience is associated with increased cortical thickness. Neuroreport 2005;16 :18931897.CrossRefGoogle ScholarPubMed
Lou, H.C., Nowak, M., Kjaer, T.W.The mental self. Prog Brain Res 2005;150 :197204.CrossRefGoogle ScholarPubMed
Luders, E., Thompson, P.M., Kurth, F., Hong, J.Y., Phillips, O.R., Wang, Y., et al.Global and regional alterations of hippocampal anatomy in long-term meditation practitioners. Hum Brain Mapp 2013;34 :33693375.CrossRefGoogle ScholarPubMed
Mathew, R.J., Wilson, W.H., Daniel, D.G.The effect of nonsedating doses of diazepam on regional cerebral blood flow. Biol Psychiatry 1985;20 :11091116.CrossRefGoogle ScholarPubMed
Newberg, A., Alavi, A., Baime, M., Pourdehnad, M., Santanna, J., d’Aquili, E.The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res 2001;106 :113122.CrossRefGoogle ScholarPubMed
Nugent, M., Artru, A.A., Michenfelder, J.D.Cerebral metabolic, vascular and protective effects of midazolam maleate: comparison to diazepam. Anesthesiology 1982;56 :172176.CrossRefGoogle ScholarPubMed
Ochsner, K.N., Gross, J.J.The cognitive control of emotion. Trends Cogn Sci 2005;9 :242249.CrossRefGoogle ScholarPubMed
Phillips, M.L., Ladouceur, C.D., Drevets, W.C.A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. M Psychiatry 2008;13 :829857.CrossRefGoogle ScholarPubMed
Pifarré, P., Simó, M., Gispert, J.D., Pallarés, M.D., Plaza, P., Martínez-Miralles, E.Diagnostic imaging studies: do they create anxiety?. Rev Esp Med Nucl 2011;30 :346350.CrossRefGoogle ScholarPubMed
Pujol, J., Giménez, M., Ortiz, H., Soriano-Mas, C., López-Solà, M., Farré, M., et al.Neural response to the observable self in social anxiety disorder. Psychol Med 2012;16 :111.Google Scholar
Schlutter, L.C., Golden, C.J., Blume, H.G.A comparison of treatments for prefrontal muscle contraction headache. Br J Med Psychol 1980;53 :4752.CrossRefGoogle ScholarPubMed
Storb, S.H., Strahl, H.M.Cognitive group therapy for tinnitus: a retrospective study of their efficacy. Laryngorhinootologie 2006;85 :506511.CrossRefGoogle ScholarPubMed
Streeter, C.C., Jensen, J.E., Perlmutter, R.M., Cabral, H.J., Tian, H., Terhune, D.B., et al.Yoga Asana sessions increase brain GABA levels: a pilot study. J Altern Complement Med 2007;13 :419426.CrossRefGoogle ScholarPubMed
Taylor, V.A., Daneault, V., Grant, J., Scavone, G., Breton, E., Roffe-Vidal, S., et al.Impact of meditation training on the default mode network during a restful state. Soc Cogn Affect Neurosci 2013;8 :414.CrossRefGoogle ScholarPubMed
Vestergaard-Poulsen, P., van Beek, M., Skewes, J., Bjarkam, C.R., Stubberup, M., Bertelsen, J., et al.Long-term meditation is associated with increased gray matter density in the brain stem. Neuroreport 2009;20 :170174.CrossRefGoogle ScholarPubMed
Vogel, W.V., Valdés Olmos, R.A., Tijs, T.J., Gillies, M.F., van Elswijk, G., Vogt, J.Intervention to lower anxiety of 18F-FDG-PET/CT patients by use of audiovisual imagery during the uptake phase before imaging. J Nucl Med Technol 2012;40 :9298.CrossRefGoogle ScholarPubMed
Wang, D.J., Rao, H., Korczykowski, M., Wintering, N., Pluta, J., Khalsa, D.S., et al.Cerebral blood flow changes associated with different meditation practices and perceived depth of meditation. Psychiatry Res 2011;191 :6067.CrossRefGoogle ScholarPubMed
Wang, G.J., Volkow, N.D., Overall, J., Hitzemann, R.J., Pappas, N., Pascani, K., et al.Reproducibility of regional brain metabolic responses to lorazepam. J Nucl Med 1996;37 :16091613.Google ScholarPubMed
Wells, R.E., Yeh, G.Y., Kerr, C.E., Wolkin, J., Davis, R.B., Tan, Y.Meditation's impact on default mode network and hippocampus in mild cognitive impairment: a pilot study. Neurosci Lett 2013;556 :1519.CrossRefGoogle ScholarPubMed
Zeidan, F., Martucci, K.T., Kraft, R.A., McHaffie, J.G., Coghill, R.C.Neural correlates of mindfulness meditation-related anxiety relief. Soc Cogn Affect Neurosci 2013[Epub ahead of print].Google ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.