Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T00:50:29.078Z Has data issue: false hasContentIssue false

Abnormal frontostriatal connectivity in adolescent-onset schizophrenia and its relationship to cognitive functioning

Published online by Cambridge University Press:  23 March 2020

A. James
Affiliation:
Highfield Unit, Warneford Hospital, Oxford, UK Department of Psychiatry, Oxford University, Oxford, UK
E. Joyce
Affiliation:
Sobell Department Motor Neuroscience, UCL Institute of Neurology, London, UK
D. Lunn
Affiliation:
Department of Statistics, University of Oxford, Oxford, UK
M. Hough
Affiliation:
FMRIB Centre, John Radcliffe Hospital Oxford, University of Oxford, Oxford, UK
L. Kenny
Affiliation:
Highfield Unit, Warneford Hospital, Oxford, UK
P. Ghataorhe
Affiliation:
GSK Clinical Imaging Centre, Hammersmith Hospital, London, UK
H. Fernandez
Affiliation:
Department of Psychiatry, Oxford University, Oxford, UK Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
PM Matthews
Affiliation:
Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
M. Zarei*
Affiliation:
National Brain Mapping Centre, Shahid Beheshti University M&G campus, Tehran, Iran
*
* Corresponding author. E-mail address:[email protected](M. Zarei).
Get access

Abstract

Background

Adolescent-onset schizophrenia (AOS) is associated with cognitive impairment and poor clinical outcome. Cognitive dysfunction is hypothesised, in part, to reflect functional dysconnectivity between the frontal cortex and the striatum, although structural abnormalities consistent with this hypothesis have not yet been demonstrated in adolescence.

Objective

To characterise frontostriatal white matter (WM) tracts in relation to cognition in AOS.

Design

A MRI volumetric and diffusion tensor imaging study.

Participants

Thirty-seven AOS subjects and 24 age and sex-matched healthy subjects.

Outcome measures

Using probabilistic tractography, cortical regions with the highest connection probability for each striatal voxel were determined, and correlated with IQ and specific cognitive functions after co-varying for age and sex. Fractional anisotropy (FA) from individual tracts was a secondary measure.

Results

Bayesian Structural Equation modeling of FA from 12 frontostriatal tracts showed processing speed to be an intermediary variable for cognition. AOS patients demonstrated generalised cognitive impairment with specific deficits in verbal learning and memory and in processing speed after correction for IQ. Dorsolateral prefrontal cortex connectivity with the striatum correlated positively with these measures and with IQ. DTI voxel-wise comparisons showed lower connectivity between striatum and the motor and lateral orbitofrontal cortices bilaterally, the left amygdalohippocampal complex, right anterior cingulate cortex, left medial orbitofrontal cortex and right dorsolateral prefrontal cortex.

Conclusions

Frontostriatal dysconnectivity in large WM tracts that can explain core cognitive deficits are evident during adolescence. Processing speed, which is affected by alterations in WM connectivity, appears an intermediary variable in the cognitive deficits seen in schizophrenia.

Type
Original article
Copyright
Copyright © European Psychiatry 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rapoport, JLGiedd, JNGogtay, NNeurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 2012; 17(12): 12281238CrossRefGoogle ScholarPubMed
Eisenberg, DPSarpal, DKohn, PDMeyer-Lindenberg, AWint, DKolachana, Bet al.Catechol-o-methyltransferase valine(158)methionine genotype and resting regional cerebral blood flow in medication-free patients with schizophrenia Biol Psychiatry 2010; 67(3): 287290CrossRefGoogle ScholarPubMed
Gutierrez-Galve, LWheeler-Kingshott, CAAltmann, DRPrice, GChu, EMLeeson, VCet al.Changes in the frontotemporal cortex and cognitive correlates in first-episode psychosis Biol Psychiatry 2010; 68(1): 5160CrossRefGoogle ScholarPubMed
Nestor, PGKubicki, MNiznikiewicz, MGurrera, RJMcCarley, RWShenton, MENeuropsychological disturbance in schizophrenia: a diffusion tensor imaging study. Neuropsychology 2008; 22(2): 246254CrossRefGoogle ScholarPubMed
Kubicki, MNiznikiewicz, MConnor, ENestor, PBouix, SDreusicke, Met al.Relationship between white matter integrity, attention, and memory in schizophrenia: a diffusion tensor imaging study Brain Imaging Behav 2009; 3(2): 191201CrossRefGoogle ScholarPubMed
Karlsgodt, KHvan Erp, TGPoldrack, RABearden, CENuechterlein, KHCannon, TDDiffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol Psychiatry 2008; 63(5): 512518CrossRefGoogle ScholarPubMed
Quan, MLee, SHKubicki, MKikinis, ZRathi, YSeidman, LJet al.White matter tract abnormalities between rostral middle frontal gyrus, inferior frontal gyrus and striatum in first-episode schizophrenia. Schizophr Res 2013; 145(1–3):110CrossRefGoogle ScholarPubMed
Epstein, KACullen, KRMueller, BARobinson, PLee, SKumra, SWhite matter abnormalities and cognitive impairment in early-onset schizophrenia-spectrum disorders. J Am Acad Child Adolesc Psychiatry 2014; 53(3): 362372 [e1–2]CrossRefGoogle ScholarPubMed
Liu, XLai, YWang, XHao, CChen, LZhou, Zet al.Reduced white matter integrity and cognitive deficit in never-medicated chronic schizophrenia: a diffusion tensor study using TBSS Behav Brain Res 2013; 252: 157163CrossRefGoogle ScholarPubMed
Sugranyes, GKyriakopoulos, MDima, DO’Muircheartaigh, JCorrigall, RPendelbury, Get al.Multimodal analyses identify linked functional and white matter abnormalities within the working memory network in schizophrenia. Schizophr Res 2012; 138(2–3):136142CrossRefGoogle Scholar
Simpson, EHKellendonk, CKandel, EA possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 2010; 65(5): 585596CrossRefGoogle ScholarPubMed
Behrens, TEBerg, HJJbabdi, SRushworth, MFWoolrich, MWProbabilistic diffusion tractography with multiple fibre orientations: what can we gain?. Neuroimage 2007; 34(1): 144155CrossRefGoogle ScholarPubMed
Behrens, TEWoolrich, MWJenkinson, MJohansen-Berg, HNunes, RGClare, Set al.Characterization and propagation of uncertainty in diffusion-weighted MR imaging Magn Reson Med 2003; 50(5): 10771088CrossRefGoogle ScholarPubMed
Rajji, TKIsmail, ZMulsant, BHAge at onset and cognition in schizophrenia: meta-analysis. Br J Psychiatry 2009; 195(4): 286293CrossRefGoogle ScholarPubMed
Lay, BBlanz, BHartmann, MSchmidt, MHThe psychosocial outcome of adolescent-onset schizophrenia: a 12-year follow-up. Schizophr Bull 2000; 26(4): 801816CrossRefGoogle Scholar
Kaufman, JBirmaher, BBrent, DRao, UFlynn, CMoreci, Pet al.Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data J Am Acad Child Adolesc Psychiatry 1997; 36(7): 980988CrossRefGoogle ScholarPubMed
Kay, SRFiszbein, AOpler, LAThe positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13(2): 261276CrossRefGoogle Scholar
Wechsler, DWechsler Abbreviated Scale of Intelligence San Antonio: The Psychological Corporation; 1999Google Scholar
Cohen, MJChildren’s Memory Scale San Antonio: The Psychological Corporation; 1997Google Scholar
Wechsler, DWechsler Memory Scale-III San Antonio: The Psychological Corporation; 1997Google Scholar
Meyers, JEMeyers, KRRey Complex Figure Test and Recognition Trial Odessa, FL: Psychological Assessment Resources, Inc.; 1995Google Scholar
Wechsler, DWechsler Intelligence Scale for Children 3rd ed.The Psychological Corporation New York 1991Google Scholar
Wechsler, DWechsler Adult Intelligence Scale-Revised Cleveland: The Psychological Corporation; 1981Google Scholar
Delis, DKaplan, EKramer, JDelis–Kaplan Executive Function System San Antonio: The Psychological Corporation; 2001Google Scholar
Oldfield, RCThe assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9(1): 97113CrossRefGoogle ScholarPubMed
Smith, SMJenkinson, MWoolrich, MWBeckmann, CFBehrens, TEJohansen-Berg, Het al.Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23(Suppl. 1):S208S219CrossRefGoogle ScholarPubMed
Patenaude, B Bayesian statistical models of shape and appearance for subcortical brain segmentation [DPhil Thesis] Department of Neurology, University of Oxford 2007Google Scholar
STATA Stata/IC 12. 1 2012 http://www.stata.comGoogle Scholar
Smith, SMNichols, TEThreshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009; 44(1): 8398CrossRefGoogle ScholarPubMed
Genovese, CRLazar, NANichols, TThresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002; 15(4): 870878CrossRefGoogle ScholarPubMed
Lunn, DSpiegelhalter, DThomas, ABest, NThe BUGS project: evolution, critique and future directions. Stat Med 2009; 28(25): 30493067CrossRefGoogle ScholarPubMed
Dickinson, DRagland, JDGold, JMGur, RCGeneral and specific cognitive deficits in schizophrenia: Goliath defeats David?. Biol Psychiatry 2008; 64(9): 823827CrossRefGoogle ScholarPubMed
Draganski, BKherif, FKloppel, SCook, PAAlexander, DCParker, GJet al.Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 2008; 28(28): 71437152CrossRefGoogle ScholarPubMed
de Leeuw, MBohlken, MMandl, RKahn, RVink, MReduced frontostriatal white matter integrity in schizophrenia patients and unaffected siblings: a DTI study. NPJ Schizophr 2015; 1: 16CrossRefGoogle Scholar
Alexander, GECrutcher, MDDeLong, MRBasal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 1990; 85: 119146CrossRefGoogle ScholarPubMed
Tziortzi, ACHaber, SNSearle, GETsoumpas, CLong, CJShotbolt, Pet al.Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb Cortex 2014; 24(5): 11651177CrossRefGoogle ScholarPubMed
Provost, JSHanganu, AMonchi, ONeuroimaging studies of the striatum in cognition. Part I: healthy individuals. Front Syst Neurosci 9 2015 140CrossRefGoogle ScholarPubMed
White, TPWigton, RJoyce, DWCollier, TFornito, AShergill, SSDysfunctional striatal systems in treatment-resistant schizophrenia. Neuropsychopharmacology 201510.1038/npp.2015.277Google ScholarPubMed
Laruelle, MKegeles, LSAbi-Dargham, AGlutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 2003; 1003: 138158CrossRefGoogle ScholarPubMed
Ragland, JDLaird, ARRanganath, CBlumenfeld, RSGonzales, SMGlahn, DCPrefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry 2009; 166(8): 863874CrossRefGoogle Scholar
Eisenberg, DPBerman, KFExecutive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 2010; 35(1): 258277CrossRefGoogle Scholar
Duncan, JOwen, AMCommon regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 2000; 23(10): 475483CrossRefGoogle ScholarPubMed
Duncan, JThe multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 2010; 14(4): 172179CrossRefGoogle ScholarPubMed
Fry, AFHale, SRelationships among processing speed, working memory, and fluid intelligence in children. Biol Psychol 2000; 54(1–3):134CrossRefGoogle ScholarPubMed
Schmithorst, VJWilke, MDardzinski, BJHolland, SKCognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Hum Brain Mapp 2005; 26(2): 139147CrossRefGoogle Scholar
Mabbott, DJNoseworthy, MBouffet, ELaughlin, SRockel, CWhite matter growth as a mechanism of cognitive development in children. Neuroimage 2006; 33(3): 936946CrossRefGoogle ScholarPubMed
Larsen, BLuna, BIn vivo evidence of neurophysiological maturation of the human adolescent striatum. Dev Cogn Neurosci 12C 2014 7485Google Scholar
Chakravarty, MMRapoport, JLGiedd, JNRaznahan, AShaw, PCollins, DLet al.Striatal shape abnormalities as novel neurodevelopmental endophenotypes in schizophrenia: a longitudinal study. Hum Brain Mapp 2015; 36(4): 14581469CrossRefGoogle ScholarPubMed
Cohen, MXSchoene-Bake, JCElger, CEWeber, BConnectivity-based segregation of the human striatum predicts personality characteristics. Nat Neurosci 2009; 12(1): 3234CrossRefGoogle ScholarPubMed
Dickinson, DRamsey, MEGold, JMOverlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 2007; 64(5): 532542CrossRefGoogle Scholar
Longman, RSSaklofske, DHFung, TSWAIS-III percentile scores by education and sex for US and Canadian populations. Assessment 2007; 14(4): 426432CrossRefGoogle Scholar
Torniainen, MSuvisaari, JPartonen, TCastaneda, AEKuha, APerala, Jet al.Sex differences in cognition among persons with schizophrenia and healthy first-degree relatives. Psychiatry Res 2011; 188(1): 712CrossRefGoogle ScholarPubMed
Tsai, PCMcDowd, JTang, TCSu, CYProcessing speed mediates gender differences in memory in schizophrenia. Clin Neuropsychol 2012; 26(4): 626640CrossRefGoogle Scholar
Kyriakopoulos, MFrangou, SRecent diffusion tensor imaging findings in early stages of schizophrenia. Curr Opin Psychiatry 2009; 22(2): 168176CrossRefGoogle ScholarPubMed
Marenco, SStein, JLSavostyanova, AASambataro, FTan, HYGoldman, ALet al.Investigation of anatomical thalamocortical connectivity and fMRI activation in schizophrenia. Neuropsychopharmacology 2011; 37(2): 499507CrossRefGoogle Scholar
Alba-Ferrara, LMde Erausquin, GAWhat does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia. Front Integr Neurosci 7 2013 9CrossRefGoogle Scholar
Zhang, DGuo, LHu, XLi, KZhao, QLiu, TIncreased cortico-subcortical functional connectivity in schizophrenia. Brain Imaging Behav 2012; 6(1): 2735CrossRefGoogle Scholar
Sarpal, DKRobinson, DGLencz, TArgyelan, MIkuta, TKarlsgodt, Ket al.Antipsychotic treatment and functional connectivity of the striatum in first-episode schizophrenia. JAMA Psychiatry 2015; 72(1): 513CrossRefGoogle ScholarPubMed
Ozcelik-Eroglu, EErtugrul, AOguz, KKHas, ACKarahan, SYazici, MKEffect of clozapine on white matter integrity in patients with schizophrenia: a diffusion tensor imaging study. Psychiatry Res 2014; 223(3): 226235CrossRefGoogle ScholarPubMed
Supplementary material: PDF

James et al. supplementary material

Supplementary Figure S1

Download James et al. supplementary material(PDF)
PDF 2.3 MB
Supplementary material: PDF

James et al. supplementary material

Supplementary Table S1

Download James et al. supplementary material(PDF)
PDF 73.8 KB
Supplementary material: PDF

James et al. supplementary material

Supplementary Table S2

Download James et al. supplementary material(PDF)
PDF 54.1 KB
Submit a response

Comments

No Comments have been published for this article.