Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T13:18:06.732Z Has data issue: false hasContentIssue false

Funciones neuroendocrinas e inmunológicas en pacientes deprimidos: un estudio de seguimiento

Published online by Cambridge University Press:  12 May 2020

S. Cervera-Enguix
Affiliation:
Facultad de Medicina, Universidad de Navarra y Departamento de Psiquiatría y Psicología Médica, Hospital Universitario de la Universidad de Navarra
Ȧ. Rodríguez-Rosado
Affiliation:
Hospital Universitario de la Universidad de Navarra, Pamplona (Navarra), España
Get access

Resumen

El desarrollo, valoración y uso de marcadores biológicos con un propósito diagnóstico en psiquiatría es sumamente importante. Sin embargo, con ciertas excepciones, todavía no han surgido marcadores verdaderamente sensibles y específicos. Para investigar la relación entre el aparato inmune y la actividad hipotalámico-pituitaria por una parte, y el estado psicopatológico de los pacientes por otra, utilizamos un diseño longitudinal y evaluamos parámetros de monocitos (HLA-DR, CD 35, filamentos de vimentín e índice de fagocitosis) y pruebas neuroendocrinas (prueba de supresión con dexametasona [DST] y prueba de estimulación de la hormona liberadora de tirotropina [TRH]) en la admisión y en el seguimiento en 49 pacientes deprimidos. Se compararon parámetros inmunológicos con pruebas neuroendocrinas en ambas fases del estudio. El uso combinado de pruebas inmunológicas y neuroendocrinas no añadió sensibilidad a la identificación inmunológica de los pacientes deprimidos. Los hallazgos nos llevaron a considerar el papel de los parámetros de monocitos como marcadores sensibles del estado depresivo, mientras que el uso combinado de pruebas neuroendocrinas e inmunológicas en la práctica clínica actual sería discutible.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Albrecht, J, Helderman, JH, Schlesser, MA, Rush, AJ. A controlled study of cellular immune function in affective disorders before and during somatic therapy. Psychiatry Res 1985; 15: 185-93.Google ScholarPubMed
Auger, MJ, Ross, JA. The biology of the macrophage. In: Lewis, CE, McGee, J, eds. The macrophage. New York: Oxford University Press, 1992; 374.Google Scholar
Berkenbosch, F, Heijnen, CJ, Croiset, G, Revers, C, Ballieux, RE, Binnekade, R, Tilders, FJH. Endocrine and immunological responses to acute stress. In: Plotnikoff, NP, Faith, RE, Murgo, AJ, Good, RA, eds. Enkephalins and Endorphins: Stress and the Immune System. New York: Plenum Press, 1986; 109-18.CrossRefGoogle Scholar
Bianco, C, Patrick, R, Nussenzwig, V. A population of lymphocytes bearing membrane receptor for antigen-antibody-complement complexes. I. Separation and characterization. J Exp Med 1970; 132: 702-20.CrossRefGoogle ScholarPubMed
Blalock, JE, Smith, EM. Human leukocyte interferon: structural and biological relatedness to adrenocorticotrophic hormones and endorphins. Proc Nati AcadSci USA 1980; 77: 5975-8.Google Scholar
Blalock, JE, Harp, C. Interferon and adrenocorticotropic hormone induction of steroidogenesis, melanogenesis and antiviral activity. Arch Virol 1981; 67: 45-9.Google ScholarPubMed
Bormann, BJ, Huang, CK, Lan, GF, Jaffe, EA. Thrombin-induced vimentin phosphorylation in cultured human umbilical vein endothelial cells. J Biol Chem 1986; 261: 10471-4.Google ScholarPubMed
Boyum, A. Isolation of human blood monocytes with Nycodenz, a new non-ionic iodinated gradient médium. Scand J Immunol 1983; 17: 429-36.CrossRefGoogle ScholarPubMed
Browning, ET, Sanders, MM. Vimentin: a phosphoprotein under hormonal regulation. J Cell Biol 1981; 90: 803-8.CrossRefGoogle ScholarPubMed
Catala, J. Benzodiazepin Effects on Mononuclear-Macrophage System. Doctoral Thesis, University of Navarra, Pamplona, 1992.Google Scholar
Chang, KG. Opioid peptides have actions on the immune system. Trends Neurosci 1984; 7: 234-5.CrossRefGoogle Scholar
Cervera, S, Sarrais, F, Ramos, F. Depression, Immune System and Neuroendocrine Tests.Spanish Biological Psychiatry Association, 15th National Meeting. Córdoba, Spain, 1990.Google Scholar
Cervera, S, Rosado, AR. Depression and Monocyte Function: A Follow-up Study. 1993 (in press).Google Scholar
Cohen, MR, Pickar, D, Dubois, M, Cohén, RM. Studies of the endogenous opioid system in the human stress response. In: Plotnikoff, NP, Faith, RE, Murgo, AJ, Good, RA, eds. Enkephalins and Endorphins: Stress and the Immune System. New York: Plenum Press, 1986; 3546.CrossRefGoogle Scholar
Darko, DF, Gillin, JC, Risch, SCet al. Mitogen-stimulated lymphocyte proliferation and pituitary hormones in major depression. Biol Psychiatry 1989; 26: 145-55.CrossRefGoogle ScholarPubMed
Frochner, SC. The role of the postsinaptic cytoskeleton in AchR organization. Trends Neurosci 1986; 9: 37-8.CrossRefGoogle Scholar
Geiger, B. Intermedíate filaments. Looking for a function. Nature 1987; 329: 392-3.CrossRefGoogle ScholarPubMed
Giorgi, JV. Lymphocyte subset measurements: significance in clinical medicine. In: Rose, NR, Friedman, H, Fahey, JL, eds. Manual of Clinical Immunology. Wahington, DC: American Society for Microbiology, 1986; 236-46.Google Scholar
Glassman, A. The dexamethasone suppression test: an overview of its current status in psychiatry. Am J Psychiatry 1987; 144: 1253-62.Google Scholar
Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 5661.CrossRefGoogle ScholarPubMed
Irwin, M, Lacher, U, Caldwell, C. Depression and reduced natural killer cytotoxicity: a longitudinal study of depressed patients and control subjects. Psychol Med 1992; 22: 1045-50.Google ScholarPubMed
Kronfol, Z, House, DJ, Silva, JR, Greden, J, Carrol, BJ. Depression, urinary free cortisol excretion and lymphocyte function. Br J Psychiatry 1986; 148: 70-3.CrossRefGoogle ScholarPubMed
Krishnan, R, Ellinwood, EH, Laszlo, J, Hood, L, Ritchie, J. Effect of gamma interferon on the hypothalamicpituitary-adrenal system. Biol Psychiatry 1987; 22: 1163-6.Google Scholar
Lazarides, E. Intermediate filaments as mechanical integrators of cellular space. Nature 1980; 283: 249-56.CrossRefGoogle ScholarPubMed
Lopker, A, Abood, LG, Hoss, W, Lionetti, FG. Steroselective muscarinic acetylcholine and opiate receptors in human phagocytic leukocytes. Biochem Pharmacol 1980; 29: 1361-5.CrossRefGoogle Scholar
Maes, M, Vandervorst, C, Suy, E, Minner, B, Raus, J. A multivariate study on the simultaneous free cortisol, adrenocorticotropic hormone and beta-endorphin escape from suppression by dexamethasone in depressed patients. Acta Psychiatr Scand 1990; 83: 480-91.Google Scholar
Maes, M, Bosmans, E, Suy, E, Minner, B, Raus, J. A further exploration of the relationships between immune parameters and the HPA-axis activity in depressed patients. Psychol Med 1991; 21: 313-20.CrossRefGoogle ScholarPubMed
Maes, M, Lambrechts, J, Bosmans, E, Jacobs, J, Suy, E, Vandervorst, C, De Jonckheere, C, Minner, B, Raus, J. Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol Med 1992; 22: 4553.CrossRefGoogle ScholarPubMed
Pert, CB, Ruff, MR, Weber, RT, Herkenham, M. Neuropeptides and their receptors: a psychosomatic network. J Immunol 1985; 135: 820-6.Google ScholarPubMed
Plotnikoff, NP, Miller, GC. Enkephalins as immunomodulators. Intern J Immunopharmacol 1983; 5: 437-41.CrossRefGoogle ScholarPubMed
Plotnikoff, NP, Murgo, AJ, Miller, GC, Corder, CN, Faith, RE. Enkephalins: immunomodulators. Pred Proc 1985; 44: 118-22.Google ScholarPubMed
Plotnikoff, NP, Faith, RE, Murgo, AJ, Good, RA. Introduction: the ying-yang hypothesis of immunomodulation. In: Plotnikoff, NP, Faith, RE, Murgo, AJ, Good, RA, eds. Enkephalins and Endorphins: Stress and the Immune System.New York: Plenum Press, 1986; 12.CrossRefGoogle Scholar
Prieto, J, Subira, ML, Castilla, A, Serrano, M. Naloxone-reversible monocyte dysfunction in patients with chronic fatigue syndrome. Scand J Immunol 1989; 30: 1320.CrossRefGoogle ScholarPubMed
Prieto, J, Camps-Bansell, J, Castilla, A. Opioid-mediated monocyte dysfunction in the chronic fatigue syndrome. In: Cameron, Bonnie, ed. The Clinical and Scientific Basis of Mialgic Encephalomielitis/Chronic Fatigue Syndrome. Ottawa, Ontario (Cañada) and Ogsdenburg, New York State (USA) 1992; 575-84.Google Scholar
Recalde, HR. A simple method of obtaining monocytes in suspension. J Immunol Methods 1984; 69: 71-7.CrossRefGoogle ScholarPubMed
Rubin, RT. Pharmacoendocrinology of major depression. Eur Arch Psychiatr Neurol Sci 1989; 238: 259-67.CrossRefGoogle ScholarPubMed
Ruff, MR, Pert, CB. Human monocyte chemotaxis to neuropeptides. In: Nerozzi, D, Goodwin, FK, Costa, E, eds. Hypothalamic Dysfunction in Neuropsychiatric Disorders. New York: Raven Press, 1987; 247-60.Google Scholar
Shavit, Y, Temían, GW, Martin, FC, Lewis, JW, Liebeskind, JC, Gale, RP. Stress, opioid peptides, the immune system, and cáncer. J Immunol 1985; 135: 834-7.Google ScholarPubMed
Smith, EM, Blalock, JE. A complete regulatory loop between the immune and neuroendocrine Systems operates through common signal molecules (hormones) and receptors. In: Plotnikoff, NP, Faith, RE, Murgo, AJ, Good, RA, eds. Enkephalins and Endorphins: Stress and the Immune System. New York: Plenum Press, 1993; 119128.Google Scholar
Solomon, GS, Kay, N, Morley, JE. Endorphins: a link between personality, stress, emotions, immunity, and disease?In: Plotnikoff, NP, Faith, RE, Murgo, AJ, Good, RA, eds. Enkephalins and Endorphins: Stress and the Immune System. New York: Plenum Press, 1986; 129-44.CrossRefGoogle Scholar
Spitzer, RL, Endicott, J, Robin, E. Research Diagnostic Criteria: rationale and reliability. Arch Gen Psychiatry 1978; 35: 773-82.CrossRefGoogle ScholarPubMed
Thalen, BE, Kjellman, BF, Ljunggren, JG, Akner, G, Kagedal, B, Wahlund, B, Wetterberg, L. Release of corticotropin after administration of corticotropin-releasing hormone in depressed patients in relation to the dexamethasone suppression test. Acta Psychiatr Scand 1993; 87: 133-40.CrossRefGoogle ScholarPubMed
Tsoko, GC, Balow, JE. Regulation of human cellular immune responses by giucocorticosteroids. In: Plotnikoff, NP, Faith, RE, Murgo, AJ, Good, RA, eds. Enkephalins and Endorphins: Stress and the Immune System. New York: Plenum Press, 1986; 159-72.CrossRefGoogle Scholar
Vallejo, J, Gasto, C, Catalán, R, Bulvena, A, Menchon, JM. Predictors of antidepressant treatment outcome in melancholia: psychosocial, clinical and biological indicators. J Affective Disord 1992; 21: 151-62.CrossRefGoogle Scholar
Williams, JB, Spitzer, RL. Research Diagnostic Criteria and DSM-III: an annotated comparison. Arch Gen Psychiatry 1982; 39: 1283-9.CrossRefGoogle ScholarPubMed
Wybran, J, Appelbloom, T, Famely, JF, Govaerts, A. Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes. J Immunol 1979; 123: 1068-70.Google ScholarPubMed
Wybran, J. Enkephalins and endorphins as modifiers of the immune system: present and future. Fed Proc 1985; 44: 92-4.Google ScholarPubMed