Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T04:39:29.043Z Has data issue: false hasContentIssue false

Activación frontal disminuida en esquizofrénicos durante la estimulación con la prueba de ejecución continua: un estudio de imágenes de resonancia magnética funcionales

Published online by Cambridge University Press:  12 May 2020

H. P. Volz
Affiliation:
Departamento de Psiquiatría.
C. Gaser
Affiliation:
Departamento de Psiquiatría.
F. Häger
Affiliation:
Departamento de Psiquiatría.
R. Rzanny
Affiliation:
Instituto de Diagnóstico y Radiología Intervencional UDIR), Universidad de Friedrich-Schiller, Philosophenweg 3, D-07740, Jena, Alemania
H. J. Mentzel
Affiliation:
Instituto de Diagnóstico y Radiología Intervencional UDIR), Universidad de Friedrich-Schiller, Philosophenweg 3, D-07740, Jena, Alemania
W. A. Kaiser
Affiliation:
Instituto de Diagnóstico y Radiología Intervencional UDIR), Universidad de Friedrich-Schiller, Philosophenweg 3, D-07740, Jena, Alemania
Get access

Resumen

La prueba de ejecución continua (CPT) se ha convertido en un componente esencial de la investigación neuropsicológica de la esquizofrenia. Además, un número considerable de estudios de imágenes cerebrales, en la mayor parte investigaciones de PET, ha empleado la CPT como estímulo cognitivo y ha establecido una hipofrontalidad relativa en los esquizofrénicos en comparación con los controles. El propósito de la presente investigación era clarificar si esta hipofrontalidad descrita antes se podía verificar también utilizando imágenes de resonancia magnética funcionales (fMRI). Se incluyó a 20 voluntarios sanos y 14 esquizofrénicos con medicación neuroléptica estable. La toma de imágenes se realizó utilizando la CPT, versión T doble, y un escáner clínico de MRI de 1,5 T con una técnica de rodaja única y una secuencia de gradiente de eco potenciado en T¡*. Los esquizofrénicos mostraron una activación disminuida en el córtex prefrontal medial derecho, el cingulado derecho y el tálamo izquierdo en comparación con los controles. Estos resultados obtenidos por fMRI se analizan con relación a los resultados publicados utilizando PET.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Andreasen, NC. The scale for the assessment of negative symptoms (SANS). Iowa: The University of Iowa; 1983.Google Scholar
Andreasen, NC. The scale for the assessment of positive symptoms (SAPS). Iowa: The University of Iowa; 1984.Google Scholar
Andreasen, NCRezai, KSwayze, VW IIFlaum, MKirchner, PCohen, Get al.Hypofrontality in neuroleptic naive patients and in patients with chronic schizophrenia. Assessment with xenon single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 1992; 49: 943–58.CrossRefGoogle ScholarPubMed
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Third Edition, revised. Whashington: American Psychiatric Press; 1987.Google Scholar
Barch, DMBraver, TSNystom, LCarter, CSNoli, DCCohen, J.Activation of prefrontal cortex by context Processing. Biol Psychiatry 1997; 41: 85S.Google Scholar
Barnes, TRE.Tardive dyskinesia: Risk factors, pathophysiology and treatment. In: Granville-Grossman, K, ed. Recent advances in clinical psychiatry, number six. London: Churchill Livingstone; 1988. p. 195205.Google Scholar
Berman, KFZec, RFWeinberger, DR. Physiological dysfunction of dorsolateral prefrontal cortex in shizophrenia. II: Role of neuroleptic treatment, attention and mental effort. Arch Gen Psychiatry 1986; 43: 125–35.CrossRefGoogle Scholar
Berman, KFIllowsky, BPWeinberger, DR. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. IV. Further evidence for regional and behavioral specifity. Arch Gen Psychiatry 1988; 45: 616–22.CrossRefGoogle Scholar
Braver, TSCohen, JDNystrom, LEJonides, JSmith, EENoli, DC. A parametric study of prefrontal cortex involvement in human working memory. Neroimage 1997; 5: 4962.CrossRefGoogle ScholarPubMed
Buchsbaum, MS. The frontal lobes, basal ganglia, and temporal lobes as sites for schizophrenia. Schizophr Bull 1990; 16: 379–89.CrossRefGoogle Scholar
Buchsbaum, MSNuechterlein, KNHaier, RJWu, JSicotte, NHazlett, Eet al.Glucose metabolic rate in normals and schizophrenics during the Continuous Performance Test assessed by positrom emission tomography. Brit J Psychiatry 1990; 156: 216–27.CrossRefGoogle Scholar
Buchsbaum, MSHaier, RJPotkin, SGNuechterlein, KBracha, HSKatz, Met al.Frontostriatal disorder of cerebral metabolism in never-mediated schizophrenics. Arch Gen Psychiatry 1992a; 49: 935–42.CrossRefGoogle Scholar
Buchsbaum, MSPotkin, SGSiegel, BV JrLohr, JKatz, MGottschalk, LAet al.Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry 1992b; 49: 966–74.CrossRefGoogle Scholar
Buchsbaum, MSSomeya, TTeng, CYAbel, LChin, SNajafi, Aet al.PET and MRI of the thalamus in never medicated patients with schizophrenia. Am J Psychiatry 1996; 153: 191–9.Google ScholarPubMed
Cleghorn, JMGarnett, ESNahmias, CFirman, GBrown, GMKaplan, RDet al.Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res 1989; 28: 119–33.CrossRefGoogle ScholarPubMed
Cohen, RMSemple, WEGross, MNorthal, TEDeLisi, LEHolcomb, HHet al.Dysfunction in a prefrontal substrate of sustained attention in schizophrenia. Life Sciences 1987; 40: 2031–9.CrossRefGoogle Scholar
Cohen, RMSemple, WEGross, MNordahl, TEHolcomb, HHDowling, MSet al.The effect of neuroleptics on dysfunction in a prefrontal substrate of sustained attention in schizophrenia. Life Sciences 1988; 43: 1141–50.CrossRefGoogle Scholar
Cohen, JDForman, SDBraver, TSCasey, BJServan-Schreiber, DNoli, DC. Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping 1994; 1: 293304.CrossRefGoogle Scholar
Cohen, RMNordahl, TESemple, WEAndreason, PLitman, REPickar, D.The brain metabolic patterns of clozapine -and fluphenazine- treated patients with schizophrenia during a continuous performance task. Arch Gen Psychiatry 1997; 54: 481–6.CrossRefGoogle ScholarPubMed
Egan, JP. Signal detection theory and ROC analysis. New York: Academic Press; 1980.Google Scholar
Friston, KJWorsley, KJFrackowiak, RSJMaziotta, JCEvans, AC. Assessing the significance of local activations using their spatial extent. Human Brain Mapping 1994; 1: 214–20.CrossRefGoogle Scholar
Friston, KJAshburner, JFrith, CDPoline, JPHeather, JBFrackowiak, RSJ.Spatial registration and normalization of images. Human Brain Mapping 1995a; 2: 165–89.CrossRefGoogle Scholar
Friston, KJHolmes, APWorsley, KJPoline, JPFrith, CDFrackowiak, RSJ.Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 1995b; 2: 189210.CrossRefGoogle Scholar
Grier, JB. Non parametric indices for sensitivity and bias: computing formulas. Psychol Bull 1971; 75: 424–9.CrossRefGoogle Scholar
Hager, FVolz, HPGaser, CMentzel, HJKaiser, WASauer, H.Challenging the anterior attentional system with a continuous performance task - a functional magnetic resonance imaging approach. Eur Arch Neurol Psychiatry 1998; in press.Google ScholarPubMed
Himke, RMHu, XStillman, AEKim, SEMerkle, HSalmi, Ret al.Functional magnetic resonance imaging of Brocas area during internal speech. Neuro Report 1993; 4: 675–8.Google Scholar
Ingvar, DHFranzen, G.Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 1974; 50: 425–62.CrossRefGoogle ScholarPubMed
Jones, PMurray, RM. The genetics of schizophrenia is the genetics of neurodevelopment. Brit J Psychiatry 1991; 158: 615–23.CrossRefGoogle ScholarPubMed
Katz, MBuchsbaum, MSSiegel, BVWu, JHaier, RJBunney, WE. Correlational patterns of central glucose metabolism in never medicated schizophrenics. Neuropsychobiol 1996; 33: 111.CrossRefGoogle Scholar
Marenco, SCoppola, RDaniel, DGZigun, JRWeinberger, DR. Regional cerebral blood flow during the Wisconsin Card Sorting Test in normal subjects studied by Xenon-133 dynamic SPECT: Comparison of absolute values, percent distribution values, and covariance analysis. Psychiatry Res Neuroimag 1993; 50: 177–92.CrossRefGoogle ScholarPubMed
Mesulam, MM. A cortical network for directed attention and unilateral neglect. Ann Neurol 1981; 10: 309–25.CrossRefGoogle ScholarPubMed
National Institute of Mental Health. 112-CGI. Clinical Global Impressions. In: Guy, WBonato, RR, eds. Manual for the ECSEU Assessment Battery. Chevy Chase: NIH; 1979. p. 12–1-12–6.Google Scholar
Neurosoft, Inc. User-Guide STIM card-sort; 1990.Google Scholar
Nuechterlein, KH. Vigilance in schizophrenia and related disorders. In: Steinhauer, SRGruzelier, JHZubin, J, eds. Handbook of schizophrenia. Amsterdam: Elsevier; 1991. p. 397433.Google Scholar
Nuechterlein, KHDawson, ME. Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bull 1984; 10: 160203.CrossRefGoogle ScholarPubMed
Oldfield, RC. The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia 1971; 9: 97113.CrossRefGoogle ScholarPubMed
Overall, JEGorham, DR. The Brief Psychiatric Rating Scale. Psychol Rep 1962; 10: 799812.CrossRefGoogle Scholar
Pantalis, CBarnes, TRENelson, HE. A pilot study of subcortical dementia in schizophrenia (Abstract). Schizophr Res 1989; 2: 69.CrossRefGoogle Scholar
Pantalis, CBarnes, TRENelson, HE. Is the concept of frontalsubcortical dementia relevant to schizophrenia? Brit J Psychiatry 1992; 160: 442–60.CrossRefGoogle Scholar
Pantalis, CNelson, HE. Cognitive functioning and symptomatology in schizophrenia: The role of frontal-subcortical Systems. In: David, ASCutting, JC, eds. The neurospsychology of schizophrenia. Hove. Lawrence Earlbaum; 1994. p. 215–29.Google Scholar
Raven, JC. Advances Progressive matrices sets I and II. Plan and use of the scale with a report of experimental work. London: Lewis HK; 1965.Google Scholar
Rosvold, HEMirsky, AFSarason, IBransome, ED JrBeck, LH. A continuous performance test of brain damage. J Consult Clin Psychol 1956; 20: 343–50.CrossRefGoogle Scholar
Schröder, JBuchsbaum, MSSiegel, BVGeider, FJHaier, RJLohr, Jet al.Patterns of cortical activity in schizophrenia. Psychol Med 1994; 24: 947–55.CrossRefGoogle Scholar
Schröder, JBuchsbaum, MSSiegel, BVGeider, FJLohr, JTang, Cet al.Cerebral metabolic activity correlates of subsyndromes in chronic schizophrenia. Schizophrenia Res 1996; 19: 4153.CrossRefGoogle ScholarPubMed
Siegel, BJ JrBuschsbaum, MSBunney, WEGottschalk, LAHaier, RJLohr, JBet al.Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients. Am J Psychiatry 1993; 150: 1325–36.Google ScholarPubMed
Siegel, BV JrNuechterlein, KHAbel, LWu, JCBuchsbaum, MS. Glucose metabolic correlates of continuous peformance test performance in adults with a history of infantile autism, schizophrenics and Controls. Schizophr Res 1995; 17: 8594.CrossRefGoogle Scholar
Talairach, JTournoux, P.Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme, 1988.Google Scholar
van den Bosch, RJ. Context and cognition in schizophrenia. In: van den Boer, JAWestenberg, HGMvan Praag, HM, eds. Advances in the neurobiology of schizophrenia. Chichester: Wiley; 1995. p. 343–66.Google Scholar
Volz, HPGaser, CHáger, FRzanny, RMentzel, HJKreitschmann-Andermahr, I.et al.Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test - a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res Neuroimag 1997; 75: 145–57.CrossRefGoogle Scholar
Weinberger, DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–9.CrossRefGoogle ScholarPubMed
Woods, SW. Regional cerebral blood flow imaging with SPECT in psychiatric disease: Focus on schizophrenia, anxiety disorders, and substance abuse. J Clin Psychiatry 1992; 53 suppl: 20–5.Google ScholarPubMed