Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:02:26.885Z Has data issue: false hasContentIssue false

Stable Isotope Palaeodietary and Radiocarbon Evidence from the Early Neolithic Site of Zemunica, Dalmatia, Croatia

Published online by Cambridge University Press:  10 April 2017

Eric Guiry
Affiliation:
University of British Columbia, Vancouver, Canada
Ivor Karavanić
Affiliation:
University of Zagreb, Croatia University of Wyoming, Laramie, USA
Rajna Šošić Klindžić
Affiliation:
University of Zagreb, Croatia
Sahra Talamo
Affiliation:
Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
Siniša Radović
Affiliation:
Croatian Academy of Sciences and Arts, Zagreb, Croatia
Michael P. Richards
Affiliation:
University of British Columbia, Vancouver, Canada Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

Abstract

The Adriatic Sea and Balkan Peninsula were an important corridor for the spread of agriculture northwards and westwards from the Near East into Europe. Therefore, the pace and nature of the Mesolithic-Neolithic transition along the Adriatic coastline has important implications for the movement of new peoples and/or ideas during one of the most eventful periods in European prehistory. We present new Early Neolithic radiocarbon and stable isotope evidence from humans and animals from the Zemunica cave site in Dalmatia, Croatia. The results show that these humans date to the earliest Neolithic in the region, and they have completely terrestrial diets, where the main protein source was most likely to have come from domesticated animals. Data are then compared to previous isotope and archaeological evidence to explore models for the spread of agriculture along the eastern Adriatic coast.

La mer Adriatique et la péninsule des Balkans jouèrent un rôle de taille dans la dissémination de l'agriculture vers le nord et l'ouest de l'Europe à partir du Proche Orient. Le caractère et la rapidité de la transition entre le Mésolithique et le Néolithique le long de la côte adriatique a donc eu des conséquences importantes pour le mouvement de nouveaux arrivants et/ou d'idées pendant la phase la plus mouvementée de la préhistoire européenne. Nous présentons ici une série de nouvelles datations radiocarbone et une analyse des isotopes stables sur la base d'ossements humains at animaux provenant de la grotte de Zemunica en Dalmatie (Croatie). Les résultats indiquent que les occupants de Zemunica appartenaient à la phase la plus ancienne du Néolithique de cette région et que leur régime alimentaire était entièrement terrestre, la source principale de protéines provenant vraisemblablement d'animaux domestiques. Enfin, en comparant les résultats obtenus à des données archéologiques et isotopiques plus anciennes, nous examinons certains modèles concernant la propagation de l'agriculture le long de la côte adriatique orientale. Translation by Madeleine Hummler

Die Adria und die Balkanhalbinsel waren bedeutende Verbindungswege für die nördliche und westliche Ausbreitung der Landwirtschaft aus dem Nahen Osten nach Europa. Die Geschwindigkeit und die Art des Übergangs vom Mesolithikum zum Neolithikum entlang der adriatischen Küste hatten erhebliche Auswirkungen auf den Verkehr von neuen Bevölkerungen und/oder Ideen in einer der ereignisreichsten Epochen der europäischen Urgeschichte. In diesem Artikel werden neue Radiokarbon Datierungen und die Ergebnisse von isotopischen Analysen von Menschen und Tiere aus der frühneolithischen Höhle von Zemunica in Dalmatien (Kroatien) vorgelegt. Es ergibt sich, dass man diese Menschen in die älteste neolithische Phase des Gebietes datieren muss und dass ihre Ernährung völlig ländlich war. Haustiere waren sehr wahrscheinlich die Hauptquelle von Proteinen. Diese Angaben werden dann mit früher erhaltenen isotopischen und archäologischen Daten verglichen um Modelle, welche die Ausbreitung der Landwirtschaft entlang der ostadriatischen Küste betreffen, zu erwägen. Translation by Madeleine Hummler

Type
Articles
Copyright
Copyright © European Association of Archaeologists 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, S.H. 1990. Preparation and Characterization of Bone and Tooth Collagen for Isotopic Analysis. Journal of Archaeological Science, 17: 431–51.Google Scholar
Bass, B. 1999. Early Neolithic Offshore Accounts: Remote Islands, Maritime Exploitations, and the Trans-Adriatic Cultural Network. Journal of Mediterranean Archaeology, 11: 165–90.Google Scholar
Bass, B. 2004. The Maritime Expansion of Early Neolithic Agro-pastoralism in the Eastern Adriatic Sea. Atti della Società per la Preistoria e Protostoria della Regione Friuli-Venezia Giulia, 14(2003): 4560.Google Scholar
Bass, B. 2008. Early Neolithic Communities in Southern Dalmatia: Farming Seafarers or Seafaring Farmers? European Journal of Archaeology, 11: 245–65.Google Scholar
Benjamin, J., Bekić, L., Komšo, D., Uhač, I.K. & Bonsall, C. 2011. Investigating the Submerged Prehistory of the Eastern Adriatic: Progress and Prospects. In: Benjamin, J., Bonsall, C., Pickard, C. & Fischer, A., eds. Submerged Prehistory. Oxford: Oxbow, pp. 193206.Google Scholar
Biagi, P. 2003. A Review of the Late Mesolithic in Italy and its Implication for the Neolithic Transition. In: Ammerman, A. & Biagi, P., eds. The Widening Harvest. Oxford: Oxbow, pp. 133–56.Google Scholar
Bonsall, C., Mlekuž, D., Bartosiewicz, L. & Pickard, C. 2013. Early Farming Adaptations of the Northeast Adriatic Karst. In: Conolly, S.C.J., Dobney, K., Manning, K. & Shennan, S., eds. The Origins and Spread of Domestic Animals in Southwest Asia and Europe. Walnut Creek (CA): Left Coast Press, pp. 145–60.Google Scholar
Borojević, K., Forenbaher, S., Kaiser, T. & Berna, F. 2008. Plant Use at Grapčeva Cave and in the Eastern Adriatic Neolithic. Journal of Field Archaeology, 33: 279303.Google Scholar
Brock, F., Bronk Ramsey, C. & Higham, T. 2007. Quality Assurance of Ultrafiltered Bone Dating. Radiocarbon, 49: 187.Google Scholar
Bronk Ramsey, C. 2013. OxCal Program, Version 4.2.3 [online] [accessed 15 December 2015]. Available at: http://c14.arch.ox.ac.uk/embed.php?File=oxcal.html.Google Scholar
Bronk Ramsey, C. & Lee, S. 2013. Recent and Planned Developments of the Program OxCal. Radiocarbon, 55: 720–30.Google Scholar
Brown, T.A., Nelson, D.E., Vogel, J.S. & Southon, J.R. 1988. Improved Collagen Extraction by Modified Longin Method. Radiocarbon, 30: 171–77.Google Scholar
Budja, M. 2011. Early Neolithic Pots and Potters in Western Eurasia. In: Dizdar, M., ed. Panoramski prapovijesni okviri. Zbornik radova posvećenih Korneliji Minichreiter uz 65. godišnjicu života. Zagreb: Institut za arheologiju, pp. 3167.Google Scholar
Chapman, J. & Müller, J. 1990. Early Farmers in the Mediterranean Basin: The Dalmatian Evidence. Antiquity, 64: 127–34.Google Scholar
Chisholm, B.S., Nelson, D.E. & Schwarcz, H.P. 1982. Stable-carbon Isotope Ratios as a Measure of Marine versus Terrestrial Protein in Ancient Diets. Science, 216(4550): 1131–32.Google Scholar
Fiedel, S.J. & Anthony, D.W. 2003. Origins of the European Neolithic as Seen from the Frontier. In: Rockman, M. & Steele, J., eds. The Colonization of Unfamiliar Landscapes: The Archaeology of Adaptation. London: Routledge, pp. 144–68.Google Scholar
Fischer, A., Olsen, J., Richards, M., Heinemeier, J., Sveinbjörnsdóttir, Á.E. & Bennike, P. 2007. Coast–inland Mobility and Diet in the Danish Mesolithic and Neolithic: Evidence from Stable Isotope Values of Humans and Dogs. Journal of Archaeological Science, 34: 2125–50.Google Scholar
Forenbaher, S. 2002. Prehistoric Populations of the Island of Hvar: An Overview of Archaeological Evidence. Collegium Antropologicum, 26: 361–78.Google Scholar
Forenbaher, S. & Kaiser, T. 2005. Palagruža and the Spread of Farming in the Adriatic. Opuscula Archaeologica Radovi Arheološkog zavoda, 29: 723.Google Scholar
Forenbaher, S. & Miracle, P. 2005. The Spread of Farming in the Eastern Adriatic. Antiquity, 79: 514–28.Google Scholar
Forenbaher, S. & Miracle, P. 2006. Pupićina Cave and the Spread of Farming in the Eastern Adriatic. In: Miracle, P. & Forenbaher, S., eds. Prehistoric Herders of Northern Istria: The Archaeology of Pupićina Cave. Pula: Arheološki muzej Istre, pp. 483523.Google Scholar
Forenbaher, S. & Miracle, P. 2014a. The Spread of Farming in the Eastern Adriatic in the Light of New Radiocarbon Dates. Diadora, 26–27: 117–33.Google Scholar
Forenbaher, S. & Miracle, P. 2014b. Transition to Farming in the Adriatic: A View from the Eastern Shore. In: Manen, C., Perrin, T. & Guilaine, J., eds. La transition Néolithique en Méditerranée. Arles: Actes Sud, pp. 233–40.Google Scholar
Forenbaher, S. & Perhoč, Z. 2015. Lithic Artifacts from Nakovana (Pelješac): Continuity and Change from Early Neolithic until the End of Prehistory. Prilozi Instituta za arheologiju u Zagrebu, 32: 574.Google Scholar
Forenbaher, S., Kaiser, T. & Miracle, P. 2013. Dating the East Adriatic Neolithic. European Journal of Archaeology, 16: 589609.Google Scholar
Guiry, E.J. & Grimes, V. 2013. Domestic Dog (Canis familiaris) Diets among Coastal Late Archaic Groups of Northeastern North America: A Case Study for the Canine Surrogacy Approach. Journal of Anthropological Archaeology, 32: 732–45.Google Scholar
Guiry, E.J., Hillier, M. & Richards, M.P. 2015. Mesolithic Dietary Heterogeneity on the European Atlantic Coastline: Stable Isotope Insights into Hunter-Gatherer Diet and Subsistence in the Sado Valley, Portugal. Current Anthropology, 56: 460–70.Google Scholar
Guiry, E.J., Hillier, M., Boaventura, R., Silva, A.M., Oosterbeek, L., Tomé, T., Valera, A., Cardoso, J.L., Hepburn, J.C. & Richards, M.P. 2016. The Transition to Agriculture in Southwestern Europe: New Isotopic Insights from Portugal's Atlantic coast. Antiquity, 90: 604–16.Google Scholar
Hedges, R.E., Clement, J.G., Thomas, C.D.L. & O'Connell, T.C. 2007. Collagen Turnover in the Adult Femoral Mid-shaft Modeled from Anthropogenic Radiocarbon Tracer Measurements. American Journal of Physical Anthropology, 133: 808–16.Google Scholar
Higham, T.F., Jacobi, R. & Bronk Ramsey, C. 2006. AMS Radiocarbon Dating of Ancient Bone Using Ultrafiltration. Radiocarbon, 48: 179.Google Scholar
Hofmanová, Z., Kreutzer, S., Hellenthal, G., Sell, C., Diekmann, Y., Díez-del-Molino, D., van Dorp, L., López, S., Kousathanas, A. & Link, V. 2016. Early Farmers from Across Europe Directly Descended from Neolithic Aegeans. Proceedings of the National Academy of Sciences, 113: 688691. doi: 10.1073/pnas.1523951113.Google Scholar
Jarvis, A., Reuter, H., Nelson, A. & Guevara, E. 2008. Hole-filled Seamless SRTM Data V4, International Centre for Tropical Agriculture (CIAT) [online] [accessed 15 December 2015]. Available at: http://srtm.csi.cgiar.org.Google Scholar
Kaiser, T. & Forenbaher, S. 2015. Navigating the Neolithic Adriatic. In: Lillios, K.T. & Chazan, M., eds. Fresh Fields and Pastures New: Papers Presented in Honor of Andrew M.T. Moore. Leiden: Sidestone Press, pp. 145–64.Google Scholar
Komšo, D. 2008. The Mesolithic in Croatia. Opuscula Archaeologica Radovi Arheološkog zavoda, 30: 5592.Google Scholar
Kromer, B., Lindauer, S., Synal, H.-A. & Wacker, L. 2013. MAMS: A New AMS Facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294: 1113.Google Scholar
Lee-Thorp, J.A. 2008. On Isotopes and Old Bones*. Archaeometry, 50: 925–50.Google Scholar
Legge, A. & Moore, A. 2011. Clutching at Straws: The Early Neolithic of Croatia and the Dispersal of Agriculture. In: Hadjikoumis, A. & Viner, S., eds. The Dynamics of Neolithisation in Europe: Studies in Honour of Andrew Sherratt. Oxford: Oxbow, pp. 176–95.Google Scholar
Lightfoot, E., Boneva, B., Miracle, P., Šlaus, M. & O'Connell, T.C. 2011. Exploring the Mesolithic and Neolithic Transition in Croatia through Isotopic Investigations. Antiquity, 85: 7386.Google Scholar
Lightfoot, E., Miracle, P., Radić, D., Šlaus, M. & O'Connell, T.C. 2010. Stable Isotope Analysis of Human Diets during the Mesolithic and Neolithic Periods at Vela Spil Cave, Korčula. Izdanja HADa, 26: 1925.Google Scholar
Lightfoot, E, Šlaus, M. & O'Connell, T.C. 2012. Changing Cultures, Changing Cuisines: Cultural Transitions and Dietary Change in Iron Age, Roman, and Early Medieval Croatia. American Journal of Physical Anthropology, 148: 543–56.Google Scholar
Longin, R. 1971. New Method of Collagen Extraction for Radiocarbon Dating. Nature, 230, 241–42 (26 March 1971); doi: 10.1038/230241a0.Google Scholar
Marijanović, B. 2009. Crno vrilo 1. Zadar: Sveučilište u Zadru.Google Scholar
McClure, S.B., Podrug, E., Moore, A.M., Culleton, B.J. & Kennett, D.J. 2014. AMS 14C Chronology and Ceramic Sequences of Early Farming in the Eastern Adriatic. Radiocarbon, 56: 1019–38.Google Scholar
Milošević, A. 1987. Bisko kod Sinja. Arheološki pregled, 28: 9495.Google Scholar
Minichreiter, K. & Krajcar Bronić, I. 2007. New Radiocarbon Dates for the Early Starčevo Culture in Croatia. Prilozi Instituta za arheologiju u Zagrebu, 23: 516.Google Scholar
Miracle, P. 2001. Feast or Famine? Epipalaeolithic Subsistence in the Northern Adriatic Basin. Documenta Praehistorica, 28: 177–97.Google Scholar
Miracle, P. & Forenbaher, S. 2005. Neolithic and Bronze-Age Herders of Pupićina Cave, Croatia. Journal of Field Archaeology, 30: 255281.Google Scholar
Miracle, P., Galanidou, N. & Forenbaher, S. 2000. Pioneers in the Hills: Early Mesolithic Foragers at Šebrn Abri (Istria, Croatia). European Journal of Archaeology, 3: 293329.Google Scholar
Paine, C., O'Connell, T. & Miracle, P. 2009. Stable Isotopic Reconstruction of Early Mesolithic Diet at Pupicina Cave. In: McCartan, S., Schulting, R., Warren, G. & Woodman, P., eds. Mesolithic Horizons. Oxford: Oxbow, pp. 210–16.Google Scholar
Price, T.D., Ambrose, S.H., Bennike, P., Heinemeier, J., Noe-Nygaard, N., Petersen, E.B., Petersen, P.V. & Richards, M.P. 2007. New Information on the Stone Age Graves at Dragsholm, Denmark. Acta Archaeologica, 78: 193219.Google Scholar
Radić, D. 2009. The Beginnings of Trans-Adriatic Navigation: A View from Vela Spila Cave (Korčula Island). In: Forenbaher, S., ed. A Connecting Sea: Maritime Interaction in Adriatic Prehistory (BAR International Series 2037). Oxford: Archaeopress, pp. 1324.Google Scholar
Rainsford, C., O'Connor, T. & Miracle, P. 2014. Fishing in the Adriatic at the Mesolithic–Neolithic Transition: Evidence from Vela Spila, Croatia. Environmental Archaeology, 19: 311–20.Google Scholar
Reed, K. 2015. From the Field to the Hearth: Plant Remains from Neolithic Croatia (c. 6000–4000 cal bc). Vegetation History and Archaeobotany, 24: 601–19.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K. A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. & van der Plicht, J. 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 years cal BP . Radiocarbon, 55: 1869–87.Google Scholar
Reuter, H.I., Nelson, A. & Jarvis, A. 2007. An Evaluation of Void-filling Interpolation Methods for SRTM Data. International Journal of Geographical Information Science, 21(9): 9831008.Google Scholar
Richards, M.P. & Hedges, R. 1999. A Neolithic Revolution? New Evidence of Diet in the British Neolithic. Antiquity, 73: 891–97.Google Scholar
Richards, M.P. & Mellars, P. 1998. Stable Isotopes and the Seasonality of the Oronsay Middens. Antiquity, 72: 178–84.Google Scholar
Richards, M.P., Douglas Price, T. & Koch, E. 2003. Mesolithic and Neolithic Subsistence in Denmark: New Stable Isotope Data. Current Anthropology, 44: 288–95.Google Scholar
Richards, M.P., Karavanić, I., Pettitt, P. & Miracle, P. 2015. Isotope and Faunal Evidence for High Levels of Freshwater Fish Consumption by Late Glacial Humans at the Late Upper Palaeolithic Site of Šandalja II, Istria, Croatia. Journal of Archaeological Science, 61: 204–12.Google Scholar
Richards, M.P., Pettitt, P.B., Trinkaus, E., Smith, F.H., Paunović, M. & Karavanić, I. 2000. Neanderthal Diet at Vindija and Neanderthal Predation: The Evidence from Stable Isotopes. Proceedings of the National Academy of Sciences, 97: 7663–66.Google Scholar
Schoeninger, M.J., DeNiro, M.J. & Tauber, H. 1983. Stable Nitrogen Isotope Ratios of Bone Collagen Reflect Marine and Terrestrial Components of Prehistoric Human Diet. Science, 220(4604): 1381–83.Google Scholar
Schulting, R.J. 2005. Comme la mer qui se retire: les changements dans l'exploitation des ressources marines du Mésolithique au Néolithique en Bretagne. In: Marchand, G. & Tresse, A., eds. Unité et diversité des processus de néolithisation sur la façade atlantique de l'Europe (7–4ème millénaires avant J.-C.). Paris: Société Préhistorique Française, pp. 163–71.Google Scholar
Schulting, R.J. 2011. Mesolithic-Neolithic Transitions: An Isotopic Tour through Europe. In: Pinhasi, R. & Stock, J. T., eds. Human Bioarchaeology of the Transition to Agriculture. Chichester: John Wiley & Sons, pp. 1541.Google Scholar
Schulting, R.J. & Richards, M.P. 2001. Dating Women and Becoming Farmers: New Palaeodietary and AMS Dating Evidence from the Breton Mesolithic Cemeteries of Téviec and Hoëdic. Journal of Anthropological Archaeology, 20: 314–44.Google Scholar
Schulting, R.J. & Richards, M.P. 2002a. Finding the Coastal Mesolithic in Southwest Britain: AMS Dates and Stable Isotope Results on Human Remains from Caldey Island, South Wales. Antiquity, 76: 1011–25.Google Scholar
Schulting, R.J. & Richards, M.P. 2002b. The Wet, the Wild and the Domesticated: The Mesolithic–Neolithic Transition on the West Coast of Scotland. European Journal of Archaeology, 5: 147–89.Google Scholar
Schulting, R.J., Fibiger, L., Macphail, R., McLaughlin, R., Murray, E., Price, C. & Walker, E.A. 2013. Mesolithic and Neolithic Human Remains from Foxhole Cave, Gower, South Wales. The Antiquaries Journal, 93: 123.Google Scholar
Schwartz, C. 1988. The Neolithic Animal Husbandry of Smilcic and Nin. In: Chapman, J.C., Bintliff, J., Gaffney, V. & Slapsak, B., eds. Recent Developments in Yugoslav Archaeology (BAR International Series 431). Oxford: British Archaeological Reports, pp. 4575.Google Scholar
Šegota, F.A. 1991. Arheološki i geološki pokazatelji holocenskog položaja razine mora na istočnoj obali Jadranskog mora. Rad Hrvatske akademije znanosti i umjetnosti, 458: 149–72.Google Scholar
Smith, D., Gaffney, V., Grossman, D., Howard, A.J., Milošević, A., Ostir, K., Podobnikar, T., Smith, W., Tetlow, E., Tingle, M. & Tinsley, H. 2006. Assessing the Later Prehistoric Environmental Archaeology and Landscape Development of the Cetina Valley, Croatia. Environmental Archaeology, 11: 171–86.Google Scholar
Šošić Klindžić, R.Š., Radović, S., Težak-Gregl, T., Šlaus, M., Perhoč, Z., Altherr, R., Hulina, M., Gerometta, K., Boschian, G. & Vukosavljević, N. 2015. Late Upper Paleolithic, Early Mesolithic and Early Neolithic from the Cave Site Zemunica near Bisko (Dalmatia, Croatia). Eurasian Prehistory, 12: 346.Google Scholar
Szpak, P. 2014. Complexities of Nitrogen Isotope Biogeochemistry in Plant-Soil Systems: Implications for the Study of Ancient Agricultural and Animal Management Practices. Frontiers in Plant Science, 5: 119.Google Scholar
Szpak, P., Orchard, T.J., McKechnie, I. & Gröcke, D.R. 2012. Historical Ecology of Late Holocene Sea Otters (Enhydra lutris) from Northern British Columbia: Isotopic and Zooarchaeological Perspectives. Journal of Archaeological Science, 39: 1553–71.Google Scholar
Talamo, S. & Richards, M. 2011. A Comparison of Bone Pretreatment Methods for AMS Dating of Samples >30,000 BP . Radiocarbon, 53: 443–49.Google Scholar
Tauber, H. 1981. 13C Evidence for Dietary Habits of Prehistoric Man in Denmark. Nature, 292: 332–33 (23 July 1981); doi:10.1038/292332a0.Google Scholar
Tauber, H. 1986. Analysis of Stable Isotopes in Prehistoric Populations. Mitteilungen der Berliner Gesellschaft für Anthropologie, Ethnologie und Urgeschichte, 7: 3138.Google Scholar
Tringham, R. 2000. Southeastern Europe in the Transition to Agriculture in Europe: Bridge, Buffer, or Mosaic. In: Price, T.D., ed. Europe's First Farmers. Cambridge: Cambridge University Press, pp. 1956.Google Scholar
van Andel, T.H. 1990. Addendum to ‘Late Quaternary Sea-level Changes and Archaeology’. Antiquity, 64: 151–52.Google Scholar
Van Klinken, G.J. 1999. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. Journal of Archaeological Science, 26: 687–95.Google Scholar
Ward, G.K. & Wilson, S. 1978. Procedures for Comparing and Combining Radiocarbon Age Determinations: A Critique. Archaeometry, 20: 1931.CrossRefGoogle Scholar
Woodman, P. 2009. Ireland's Place in the European Mesolithic: Why it's OK to be Different. In: McCartan, S., Schulting, R., Warren, G. & Woodman, P., eds. Mesolithic Horizons. Oxford: Oxbow, pp. 3446.Google Scholar
Zavodny, E., McClure, S.B., Culleton, B.J., Podrug, E. & Kennett, D.J. 2014. Neolithic Animal Management Practices and Stable Isotope Studies in the Adriatic. Environmental Archaeology, 19: 184–95.Google Scholar
Zilhão, J. 2001. Radiocarbon Evidence for Maritime Pioneer Colonization at the Origins of Farming in West Mediterranean Europe. Proceedings of the National Academy of Sciences, 98: 14180–85.Google Scholar
Zvelebil, M. & Lillie, M. 2000. Transition to Agriculture in Eastern Europe. In: Price, T.D., ed. Europe's First Farmers. Cambridge: Cambridge University Press: pp. 5792.Google Scholar