Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T11:38:45.717Z Has data issue: false hasContentIssue false

Isotopic Investigation of Diet and Residential Mobility in the Neolithic of the Lower Rhine Basin

Published online by Cambridge University Press:  25 January 2017

Elisabeth Smits
Affiliation:
University of Amsterdam, Netherlands
Andrew R. Millard
Affiliation:
Durham University, UK
Geoff Nowell
Affiliation:
Durham University, UK
D. Graham Pearson
Affiliation:
Durham University, UK

Abstract

Multiple isotopic systems (C, N, O, S, Sr, Pb) are applied to investigate diet and mobility amongst the Middle Neolithic populations at Schipluiden and Swifterbant (Netherlands). A review of carbon and nitrogen isotope analyses of European Mesolithic and Neolithic populations shows a shift in diet from the Mesolithic to the Neolithic, but also great variety in Neolithic diets, several of which incorporate fish. At Swifterbant (c. 4300–4000 BC) the population had a diet largely based on terrestrial and freshwater resources, despite proximity to tidal waters. Only one individual (of 10) showed evidence for migration. In contrast at Schipluiden (c. 3600–3400 BC) there were migrants who had a diet lower in marine resources than those without evidence for migration. The faunal spectrum and isotopic similarities with sites in the Iron Gates Gorge suggest that sturgeon may have been important. There is some evidence that migrants at Schipluiden were not accorded the formal burial given to locally born people.

Des systèmes isotopiques multiples (C, N, O, S, Sr, Pb) sont utilisés pour étudier l'alimentation et la mobilité des populations du Néolithique moyen à Schipluiden et Swifterbant (Pays-Bas). Une révision des analyses des isotopes de carbone et de nitrogène des populations européennes du Mésolithique et du Néolithique montre d'une part un changement dans l'alimentation du Mésolithique au Néolithique, et de plus une grande variété dans les régimes néolithiques, dont certains comprenaient du poisson. À Swifterbant (env. 4300 – 4000 BC), l'alimentation de la population se basait en majeure partie sur des ressources terrestres et d'eau douce, malgré la proximité des eaux marins. Un seul individu (sur dix) montrait des signes de migration. À Schipluiden (env. 3600 – 3400 BC) par contre on constate la présence de migrants avec un régime plus pauvre en ressources maritimes que celui des hommes sans signes de migration. Le spectre de la faune et des similarités isotopiques avec des sites des Portes de Fer suggèrent que l'esturgeon jouait peut-être un rôle important. Il existe des preuves que les migrants de Schipluiden n'avaient pas droit aux funérailles formelles accordées aux gens nés sur place.

Zusammenfassung

Zusammenfassung

Verschiedene Isotopensysteme (Kohlenstoff, Stickstoff, Sauerstoff, Schwefel, Strontium und Blei) werden angewendet, um die Ernährung und Mobilität zwischen den mittelneolithischen Populationen von Schipluiden und Swifterbant (Niederlande) zu untersuchen. Eine Überprüfung von Kohlenstoffund Stickstoffanalysen mesolithischer und neolithischer Populationen Europas zeigt eine Veränderung in der Ernährung vom Meso- zum Neolithikum, jedoch große interne Variabilität innerhalb der neolithischen Nahrungsspektren, die in mehreren Fällen Fisch enthielt. In Swifterbant (ca. 4300–4000 BC) basierte die Nahrung ungeachtet der Nähe zu den Tidengewässern weitgehend auf terrestrischen und auf Frischwasserressourcen. Nur ein Individuum (aus zehn) zeigte Hinweise auf Wanderungsbewegungen. Dagegen konnten in Schipluiden (ca. 3600–3400 BC) Migranten festgestellt werden, deren Ernährung geringere marine Ressourcen zeigte, als die ohne Hinweise aufWanderung. Das Faunenspektrum und isotopische Ähnlichkeiten mit Fundplätzen in der Schlucht des Eisernen Tores deuten darauf hin, dass Stör eine besondere Rolle gespielt haben könnte. Es gibt verschiedene Hinweise darauf, dass den Zugewanderten in Schipluiden nicht die formalen Grabsitten der lokal geborenen Menschen zuteil wurden.

Type
Articles
Copyright
Copyright © 2010 Sage Publications 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balasse, M., Bocherens, H., Tresset, A., Mariotti, A. and Vigne, J.D., 1997. Émergence de la production laitière au Néolithique? Contribution de l'analyse isotopique d'ossements de bovins archéologique. Comptes Rendus de l'Académie des Sciences, Paris, Sciences de la terre et des planètes 325(12):10051010.Google Scholar
Barberena, R. and Borrero, L.A., 2005. Stable isotopes and faunal bones: Comments on Milner et al. (2004). Antiquity 79(303):191195.Google Scholar
Bocherens, H., Polet, C. and Toussaint, M., 2007. Palaeodiet of Mesolithic and Neolithic populations of Meuse Basin (Belgium): evidence from stable isotopes. Journal of Archaeological Science 34(1):1027.Google Scholar
Bogaard, A., Heaton, T.H.E., Poulton, P. and Merbach, I., 2007. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science 34(3):335343.Google Scholar
Bonsall, C., Cook, G., Lennon, R., Harkness, D., Scott, M., Bartosiewicz, L. and McSweeney, K., 2000. Stable isotopes, radiocarbon and the Mesolithic-Neolithic transition in the Iron Gates. Documenta Praehistorica 27(7):119132.Google Scholar
Bonsall, C., Lennon, R., McSweeney, K., Stewart, C., Harkness, D., Boroneant, V., Bartosiewicz, L., Payton, R. and Chapman, J., 1997. Mesolithic and early Neolithic in the Iron Gates: a palaeodietary perspective. Journal of European Archaeology 5(1):5092.Google Scholar
Borić, D., Grupe, G., Peters, J. and Mikić, Z., 2004. Is the Mesolithic-Neolithic sub-sistence dichotomy real? New stable isotope evidence from the Danube Gorges. European Journal of Archaeology 7(3):221248.Google Scholar
Bosl, C., Grupe, G. and Peters, J., 2006. A late Neolithic vertebrate food web based on stable isotope analyses. International Journal of Osteoarchaeology 16(4):296315.Google Scholar
Brinckhuizen, D.C., 2006. Fish. In Louwe Kooijmans, L.P. and Jongste, P. (eds), Schipluiden: A Neolithic Settlement on the Dutch North Sea Coast c. 3500 cal BC: 449470. Analecta Praehistorica Leidensia 37/38. Leiden: Leiden University.Google Scholar
Budd, P., Millard, A., Chenery, C., Lucy, S. and Roberts, C., 2004. Investigating population movement by stable isotopes: A report from Britain. Antiquity 78(299):127140.Google Scholar
Cappers, R.T.J. and Raemaekers, D.C.M., 2008. Cereal cultivation at Swifterbant. Current Anthropology 49(3):385402 Google Scholar
Chenery, C.A., 2005. The analysis of 18O/16O ratios of biogenic phosphates. Keyworth: NERC Isotope Geoscience Laboratory Report 195.Google Scholar
Constandse-Westermann, T.S. and Meiklejohn, C., 1979. The human remains from Swifterbant (Swifterbant contributions, 12). Helinium 19(3):235260.Google Scholar
Craig, O.E., Forster, M., Andersen, S.H., Koch, E., Crombe, P., Milner, N.J., Stern, B., Bailey, G.N. and Heron, C.P., 2007. Molecular and isotopic demonstration of the processing of aquatic products in northern European prehistoric pottery. Archaeometry 49(1):135152.Google Scholar
Craig, O.E., Ross, R., Andersen, S.H., Milner, N. and Bailey, G.N., 2006. Focus: sulphur isotope variation in archaeological marine fauna from northern Europe. Journal of Archaeological Science 33(11):16421646.Google Scholar
Darling, W.G., 2004. Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective. Quaternary Science Reviews 23(7–8):743770.Google Scholar
Daux, V., Lécuyer, C., Héran, M.-A., Amiot, R., Simon, L., Fourel, F., Martineau, F., Lynnerup, N., Reychler, H. and Escarguel, G., 2008. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55(6):11381147.Google Scholar
Deniro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809.Google Scholar
Durrwachter, C., Craig, O.E., Collins, M.J., Burger, J. and Alt, K.W., 2006. Beyond the grave: variability in Neolithic diets in Southern Germany? Journal of Archaeological Science 33(1):3948.Google Scholar
Eriksson, G., Lougas, L. and Zagorska, I., 2003. Stone Age hunter-fisher-gatherers at Zvejnieki, northern Latvia: radiocarbon, stable isotope and archaeozoology data. Before Farming 2003(1):125.Google Scholar
Fischer, A., Olsen, J., Richards, M., Heinemeier, J., Sveinbjörnsdóttir, Á.E. and Bennike, P., 2007. Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. Journal of Archaeological Science 34(12):21252150.Google Scholar
Fogel, M.L., Tuross, N. and Owsley, D.W., 1989. Nitrogen isotope tracers. Carnegie Institute of Washington Yearbook 88:133134.Google Scholar
Hedges, R.E.M., 2004. Isotopes and red herrings: comments on Milner et al. and Lidén et al. Antiquity 78(299):3437.Google Scholar
Hedges, R., Saville, A. and O'Connell, T., 2008. Characterizing the diet of individuals at the Neolithic chambered tomb of Hazleton North, Gloucestershire, England, using stable isotopic analysis. Archaeometry 50(1):114128.Google Scholar
Holĉik, J., 1989. The Freshwater Fishes of Europe: General Introduction to Fishes/ Acipenseriformes. Wiesbaden: Aula-Verlag.Google Scholar
Honch, N.V., Higham, T.F.G., Chapman, J., Gaydarska, B. and Hedges, R.E.M., 2006. A palaeodietary investigation of carbon (C-13/C-12) and nitrogen (N-15/N-14) in human and faunal bones from the Copper Age cemeteries of Varna I and Durankulak, Bulgaria. journal of Archaeological Science 33(11):14931504.Google Scholar
IAEA/WMO, 2004. Global Network of Isotopes in Precipitation. The GNIP Database. URL (accessed November 2009: http://www-naweb.iaea.org/napc/ih/GNIP/IHS_GNIP.html Google Scholar
Koot, H., and Van Der Have, B., 2001. Graven in Rijswijk, de steentijdmensen van Ypenburg. Rijswijk: Gemeent Rijswijk.Google Scholar
Koot, J.M., Bruning, L. and Houkes, R.A., 2008. Ypenburg-locatie 4, Een nederzetting met grafveld uit het Midden-Neolithicum in het West -Nederlandse Kustgebied. Den Haag: Haagse Oudheidkundige Publicaties.Google Scholar
Lidén, K., Eriksson, G., Nordqvist, B., Gotherstrom, A. and Bendixen, E., 2004. ‘The wet and the wild followed by the dry and the tame’ - or did they occur at the same time? Diet in Mesolithic Neolithic southern Sweden. Antiquity 78(299):2333.Google Scholar
Lillie, M. and Jocobs, K., 2006. Stable isotope analysis of 14 individuals from the Mesolithic cemetery of Vasilyevka II, Dnieper Rapids region, Ukraine. journal of Archaeological Science 33(6):880886.Google Scholar
Longinelli, A., 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleodimatological research? Geochimica et Cosmochimica Acta 48(2):385390.Google Scholar
Louwe Kooijmans, L.P., 2005. Hunters become farmers: Early Neolithic B and Middle Neolithic A. In Louwe Kooijmans, L.P., van den Broeke, P.W., Fokkens, H. and van Gijn, A.L. (eds) The Prehistory of The Netherlands, Volume I:249271. Amsterdam. Amsterdam University Press.Google Scholar
Louwe Kooijmans, L.P. and Jongste, P.F.B. (eds), 2006. Schipluiden. A Neolithic Settlement on the Dutch North Sea Coast c. 3500 cal BC. Analecta Praehistorica Leidensia 37/38. Leiden: Leiden University.Google Scholar
Louwe Kooijmans, L.P. and Smits, E., 2001. Menselijke skeletresten. In Louwe Kooijmans, L.P. (ed.): Hardinxveld-Giessendam, De Bruin. Een jachtkamp uit het Laat-Mesolithicum en het begin van de Swifterbant-cultuur, 5500–4450 v. Chr: 479498. Rapportage Archeologische Monumentenzorg 83. Amersfoort: ROB.Google Scholar
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M. and Meiklejohn, C., 1994. The Mesolithic-Neolithic transition in Portugal: isotopic and dental evidence of diet. journal of Archaeological Science 21(2):201216.Google Scholar
Meiklejohn, C. and Constandse-Westermann, T.S., 1978. The human skeletal material from Swifterbant, earlier Neolithic of the Northern Netherlands. Palaeohistoria 20:3989.Google Scholar
Millard, A.R., 2000. A model for the effect of weaning on nitrogen isotope ratios in humans. In Goodfriend, G., Collins, M., Fogel, M., Macko, S. and Wehmiller, J. (eds), Perspectives in Amino Acid and Protein Geochemistry: 5159. New York: Oxford University Press.Google Scholar
Milner, N., Craig, O.E., Bailey, G.N. and Andersen, S.H. 2006. Touch not the fish: the Mesolithic-Neolithic change of diet and its significance - a response to Richards and Schulting. Antiquity 80(308):456458.Google Scholar
Milner, N., Craig, O.E., Bailey, G.N., Pedersen, K. and Andersen, S.H., 2004. Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic coastal populations. Antiquity 78(299):922.Google Scholar
Nehlich, O. and Richards, M.P., 2009. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeological and Anthropological Sciences 1(1):5975.Google Scholar
Nehlich, O., Montgomery, J., Evans, S., Schade-Lindig, S., Pichler, S.L., Richards, M.P. and Alt, K.W., 2009. Mobility or migration: a case study from the Neolithic set-tlement of Nieder-Mörlen (Hessen, Germany). journal of Archaeological Science 36(8):17911799 Google Scholar
Niggemann, S, Mangini, A., Richter, D.K. and Wurth, G., 2003. A paleoclimate record of the last 17,600 years in stalagmites from the B7 cave, Sauerland, Germany. Quaternary Science Reviews 22(5–7):555567.Google Scholar
Ogrinc, N. and Budja, M., 2005. Paleodietary reconstruction of a Neolithic population in Slovenia: a stable isotope approach. Chemical Geology 218(1–2):103116.Google Scholar
O'Neil, J.R., Roe, L.J., Renhard, E. and Blake, R.E., 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel journal of Earth Sciences 43(3–4):203212.Google Scholar
Papathanasiou, A., 2003. Stable isotope analysis in Neolithic Greece and possible implications on human health. International journal of Osteoarchaeology 13(5):314324.Google Scholar
Phillips, D.L., Newsome, S.D. and Gregg, J.W., 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144(4):520527.Google Scholar
Richards, M.P. and Schulting, R.J., 2006. Touch not the fish: the Mesolithic-Neolithic change of diet and its significance. Antiquity 80(308):444456.Google Scholar
Richards, M.P., Fuller, B.T. and Hedges, R.E.M., 2001. Sulphur isotopic variation in ancient bone collagen from Europe: implications for human palaeodiet, residence mobility and modern pollutant studies. Earth and Planetary Science Letters 191(3–4):185190.Google Scholar
Richards, M.P., Fuller, B.T., Sponheimer, M., Robinson, T. and Ayliffe, L., 2003a. Sulphur isotopes in palaeodietary studies: a review and results from a controlled feeding experiment. International journal of Osteoarchaeology 13(1–2):3745.CrossRefGoogle Scholar
Richards, M.P., Price, T.D. and Koch, E., 2003b. Mesolithic and Neolithic subsistence in Denmark: new stable isotope data. Current Anthropology 44(2):288295.Google Scholar
Richards, M.P., Schulting, R.J. and Hedges, R.E.M., 2003c. Sharp shift in diet at onset of Neolithic. Nature 425(6956):366366.CrossRefGoogle ScholarPubMed
Schulting, R.J., 1998. Slighting the sea: Stable isotope evidence for the transition to farming in northwestern Europe. Documenta Praehistorica 25:203218.Google Scholar
Schulting, R.J. and Richards, M.P., 2001. Dating women and becoming farmers: new palaeodietary and AMS dating evidence from the Breton Mesolithic Cemeteries of Téviec and Hoëdic. journal of Anthropological Archaeology 20(3):314344.Google Scholar
Schulting, R.J., Blockley, S.M., Bocherens, H., Drucker, D. and Richards, M., 2008. Stable carbon and nitrogen isotope analysis on human remains from the early Mesolithic site of La Vergne (Charente-Maritime, France). journal of Archaeological Science 35(3):763772.CrossRefGoogle Scholar
Smits, E. and Louwe Kooijmans, L.P., 2001. De menselijke skeletresten. In Louwe Kooijmans, L.P. (ed.): Hardinxveld-Giessendam, Polderweg. Een jachtkamp uit het Laat-Mesolithicum, 5500–5000 v. Chr: 419440. Rapportage Archeologische Monurnentenzorg 83. Amersfoort: ROB.Google Scholar
Smits, E. and Louwe Kooijmans, L.P., 2006. Graves and human remains. In Louwe Kooijmans, L.P. and Jongste, P. (eds): Schipluiden - A Neolithic Settlement on the Dutch North Sea Coast c. 3500 cal BC: 91112. Analecta Praehistorica Leidensia 37/38. Leiden: Leiden University.Google Scholar
Smits, E. and Der Van Plicht, J., 2009. Mesolithic and Neolithic human remains in the Netherlands: physical anthropological and stable isotope investigations. Journal of Archaeology of the Low Countries 1(1):5585.Google Scholar
Van Der Plicht, J., Wijma, S., Aerts, A.T., Pertuisot, M.H. and Meijer, H.A.J., 2000. The Groningen AMS facility: status report. Nuclear Instruments and Methods B172, 5865.Google Scholar
Van Der Waals, J.D., 1977. Excavations at the natural levee sites S2 and S3/5 and S4. Helinium 17(1): 3–2.Google Scholar
Van Zeist, W. and Palfenier-Vegter, R.M., 1981. Seeds and fruits from the Swifterbant S3 site. Final reports on Swifterbant IV, Palaeohistoria 23:105168.Google Scholar
Walraven, N., Van Der Veer, G., Van Os, B.J.H., Klaver, G.T., Baker, J.H., Vriend, S.P. and Van Capellen, P. (in preparation) Stable lead isotopic mapping of top- and subsoils in the Netherlands.Google Scholar
White, C., Longstaffe, F.J. and Law, K.R., 2004. Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. Journal of Archaeological Science 31(2):233250.Google Scholar
Zeiler, J.T., 1997. Hunting, fowling and stock-breeding at Neolithic sites in the western and central Netherlands. , Groningen.Google Scholar
Zeiler, J.T., 2006. Mammals. In Louwe Kooijmans, L.P. and Jongste, P. (eds), Schipluiden: A Neolithic settlement on the Dutch North Sea Coast c.3500 cal BC: 375420. Analecta Praehistorica Leidensia 37/38. Leiden: Leiden University.Google Scholar