Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T13:53:43.010Z Has data issue: false hasContentIssue false

Dental Health and the Transition to Agriculture in Prehistoric Ukraine: A Study of Dental Caries

Published online by Cambridge University Press:  25 January 2017

Jordan K. Karsten*
Affiliation:
Department of Religious Studies and Anthropology, University of Wisconsin Oshkosh, USA
Sarah E. Heins*
Affiliation:
Department of Anthropology, University at Albany, State University of New York, USA
Gwyn D. Madden*
Affiliation:
Department of Anthropology, Grand Valley State University, Allendale, USA
Mykhailo P. Sokhatskyi*
Affiliation:
Borschiv Regional Museum, Ministry of Culture and Arts of Ukraine, Ukraine
*
Correspondence to: Jordan K. Karsten, Department of Anthropology, University at Albany, 1400 Washingto Ave, Albany, NY 12222. Email: [email protected] [email: [email protected]]

Abstract

Bioarchaeological studies have found that, in general, the adoption of agriculture is associated with deteriorating oral health, most frequently manifested as an increase in the prevalence of dental caries. However, compared to other regions of the world, bioarchaeological studies focusing on prehistoric Europe have produced more variable results, with different populations experiencing deteriorations, improvements, and stasis in oral health. This study assesses the oral health of individuals of the Tripolye culture buried in Verteba Cave, Ukraine, within the context of the transition to agriculture in Eastern Europe. We compare the rates of dental caries between Tripolye farmers with earlier hunter-fisher-gatherers from Ukraine. The Tripolye were found to have carious lesions on 9.5 per cent of teeth, while the hunter-fisher-gatherers were found to be universally free of carious lesions. A Fisher's exact test demonstrates that this difference is statistically significant, supporting the model that the transition to agriculture was detrimental to oral health in prehistoric Ukraine. This could be related to the manner in which grain was processed by the Tripolye and the needs of their relatively population-dense society.

Des examens bioarchéologiques ont démontré qu'en général, l'adoption de l'agriculture va de pair avec une détérioration de la santé bucco-dentaire, qui se manifeste le plus souvent par une augmentation de la prévalence des caries dentaires. Toutefois, comparé à d'autres régions du monde, les études bioarchéologiques portant sur l'Europe préhistorique ont donné des résultats plus variables, avec différentes populations connaissant des détériorations, des améliorations et un status quo de la santé bucco-dentaire. Cette étude vise à évaluer la santé bucco-dentaire d'individus de la culture de Tripolye enterrés dans la grotte de Verteba en Ukraine, dans le contexte de la transition vers l'agriculture en Europe de l'est. Nous comparons les taux de caries dentaires des agriculteurs de Tripolye avec ceux de chasseurs-cueilleurs-pêcheurs ukrainiens plus anciens. Les gens de Tripolye présentaient des lésions carieuses sur 9,5% de leurs dents, tandis que les chasseurs-cueilleurs-pêcheurs n'avaient pas de lésions carieuses du tout. Un test exact de Fisher montre que cette différence est statistiquement relevante, supportant le modèle proclamant que la transition vers l'agriculture était défavorable pour la santé bucco-dentaire en Ukraine préhistorique. Ceci pourrait être lié à la manière selon laquelle les grains était traités par les gens de Tripolye ainsi qu'aux besoins de leur société à population relativement dense. Translation by Isabelle Gerges

Bioarchäologische Studien haben gezeigt, dass die Einführung der Landwirtschaft grundsätzlich mit einer Verschlechterung der Mundgesundheit, besonders deutlich erkennbar durch die Zunahme der Häufigkeit von Karieserkrankungen, einhergeht. Allerdings haben bioarchäologische Studien mit einem Fokus auf dem vorgeschichtlichen im Vergleich mit anderen Regionen der Welt variablere Resultate erzielt, die sich bei verschiedenen Populationen durch Verschlechterungen, Verbesserungen oder ein Gleichbleiben der Mundgesundheit widerspiegeln. Diese Untersuchung widmet sich der Mundhygiene von Individuen der Tripol'e-Kultur, die in der Verteba-Höhle (Ukraine) bestattet wurden, vor dem Hintergrund des Übergangs zur Landwirtschaft in Osteuropa. Die Zahnkaries-Frequenz von Tripol'e-Bauern wird mit der früherer Jäger und Sammler aus der Ukraine verglichen. Es zeigt sich, dass die Träger der Tripol'e-Kultur bei durchschnittlich 9,5% der Zähne Karies aufweisen, während die Jäger, Fischer und Sammler keinerlei Kariesläsionen besitzen. Ein Exakter Test nach Fisher (Fisher-Yates-Test) belegt, dass dieser Unterschied statistisch signifikant ist und unterstützt das Erklärungsmodell, dass der Übergang zur Landwirtschaft der Mundgesundheit der vorgeschichtlichen Ukraine diametral entgegenstand. Dies könnte an der Art und Weise, mit der das Getreide in der Tripol'e-Kultur verarbeitet wurde, sowie den Notwendigkeiten ihrer relativ bevölkerungsdichten Gesellschaft gelegen haben. Translation by Heiner Schwarzberg

Type
Articles
Copyright
Copyright © 2015 the European Association of Archaeologists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennike, P. & Alexandersen, V. 2007. Population Plasticity in Southern Scandinavia: From Oysters and Fish to Gruel and Meat. In: Cohen, M.N. and Crane-Kramer, G.M.M., eds. Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification. Gainesville: University Press of Florida, pp. 130–48.Google Scholar
Boston, C.E. 2009. Health and Morbidity in Ancient Chilean Populations. Nexus: The Canadian Student Journal of Anthropology, 21 (1): 1725.Google Scholar
Buikstra, J.E. & Ubelaker, D.H. 1994. Standards for Data Collection from Human Skeletal Remains. Fayetteville: Arkansas Archaeological Survey.Google Scholar
Buttner, W. & Muhler, J.C. 1958. The Effect of Feeding Calcium Phosphate Salts with Different Solubilities on Dental Caries, the Composition of the Saliva, and the Femurs of Rats. Journal of Dental Research, 37 (5): 860–64.Google Scholar
Chapman, J., Videiko, M., Hale, D., Gaydarska, B., Burdo, N., Rassmann, K., Mischka, C., Muller, J., Korvin-Piotrovskiy, A. & Kruts, V. 2014. European Journal of Archaeology, 17 (3): 369406.CrossRefGoogle Scholar
Cunha, E., Umbelino, C., Silva, A.M. & Cardoso, F. 2007. What Can Pathology Say about the Mesolithic and Late Neolithic/Chalcolithic Communities? The Portuguese Case. In: Cohen, M.N. and Crane-Kramer, G.M.M., eds. Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification. Gainesville: University Press of Florida, pp. 164–75.Google Scholar
Dergachev, V.A. 1978. Vykhvatintsy Cemetery. Kishinev: Shtiintsa.Google Scholar
Eshed, V., Gopher, A. & Hershkovitz, I. 2006. Tooth Wear and Dental Pathology at the Advent of Agriculture: New Evidence from the Levant. American Journal of Physical Anthropology, 130 (2): 145–59.Google Scholar
Firestone, A.R., Schmidt, R. & Muhlemann, H.R. 1982. Cariogenic Effects of Cooked Wheat Starch alone or with Sucrose and Frequency-Controlled Feedings in Rats. Archives of Oral Biology, 27 (9): 759–63.Google Scholar
Formicola, V. 1987. Neolithic Transition and Dental Changes: The Case of an Italian Site. Journal of Human Evolution, 16 (2): 231–39.Google Scholar
Hartnady, P. & Rose, J.C. 1991. Abnormal Tooth-Loss Patterns among Archaic-Period Inhabitant of the Lower Pecos Region, Texas. In: Kelley, M.A. and Larsen, C.S., eds. Advances in Dental Anthropology. New York: Wiley-Liss, pp. 267–79.Google Scholar
Hillson, S.W. 1979. Diet and Dental Disease. World Archaeology, 11 (2): 147–62.CrossRefGoogle ScholarPubMed
Jackes, M., Lubell, D. & Meiklejohn, C. 1997. Healthy but Mortal: Human Biology and the First Farmers of Western Europe. Antiquity, 71: 639–58.CrossRefGoogle Scholar
Jarošová, I. & Dočkalová, M. 2008. Dental Remains from the Neolithic Settlements in Moravia, Czech Republic. Anthropologie, 46 (1): 77101.Google Scholar
Kadrow, S., Sokhackiy, M., Tkachuk, T. & Trela, E. 2003. Sprawozdanie ze studiów I wyniki analiz materiałów zabytkowych kultury trypolskiej z Bilcza Złotego znajdujacych si ę w zbiorach museum archeologicznego w Krakowie. Materiały Archeologiczne, 34 (1): 53143.Google Scholar
Kelley, M.A., Levesque, D.R. & Weidl, E. 1991. Contrasting Patterns of Dental Disease in Five Early Northern Chilean Groups. In: Kelley, M.A. and Larsen, C.S., eds. Advances in Dental Anthropology. New York: Wiley-Liss, pp. 203–13.Google Scholar
Korvin-Piotrovskiy, A.G. 2008. Trypilian Culture in Ukraine. In: Ciuk, K., ed. Mysteries of Ancient Ukraine: The Remarkable Trypilian Culture. Toronto: Royal Ontario Museum, pp. 2231.Google Scholar
Korvin-Piotrovskiy, A.G. 2012. Tripolye Culture in Ukraine. In: Menotti, F. and Korvin-Piotrovskiy, A.G., eds. The Tripolye Culture Giant-Settlements in Ukraine: Formation, Development, and Decline. Oxford: Oxbow Books, pp. 618.CrossRefGoogle Scholar
Kruts, V. 2008. Giant Trypilian Settlements. In: Ciuk, K., ed. Mysteries of Ancient Ukraine: The Remarkable Trypilian Culture. Toronto: Royal Ontario Museum, pp. 5866.Google Scholar
Kruts, V. 2012. Giant-Settlements of Tripolye Culture. In: Menotti, F. and Korvin-Piotrovskiy, A.G., eds. The Tripolye Culture Giant-Settlements in Ukraine: Formation, Development, and Decline. Oxford: Oxbow Books, pp. 7078.Google Scholar
Landis, J.R. & Koch, G.G. 1977. The Measurement of Observer Agreement for Categorical Data. Biometrics, 33 (1): 159–74.Google Scholar
Larsen, C.S. 1984. Health and Disease in Prehistoric Georgia: The Transition to Agriculture. In: Cohen, M.N. and Armelagos, G.J., eds. Paleopathology at the Origins of Agriculture. New York: Academic Press, pp. 367–92.Google Scholar
Larsen, C.S. 1995. Biological Changes in Human Populations with Agriculture. Annual Review of Anthropology, 24 (1): 185213.Google Scholar
Larsen, C.S. 1997. Bioarchaeology: Interpreting Behavior from the Human Skeleton. Cambridge: Cambridge University Press.Google Scholar
Larsen, C.S. 2006. The Agricultural Revolution as Environmental Catastrophe: Implications for Health and Lifestyle in the Holocene. Quaternary International, 150 (1): 1220.Google Scholar
Larsen, C.S., Hutchinson, D.L., Stojanowski, C.M., Williamson, M.A., Griffin, M.C., Simpson, S.W., Ruff, C.B., Schoeninger, M.J., Norr, L., Teaford, M.E., Driscoll, E.M., Schmidt, C.W. & Tung, T.A. 2007. Health and Lifestyle in Georgia and Florida: Agricultural Origins and Intensification in Regional Perspective. In: Cohen, M.N. and Crane-Kramer, G.M.M., eds. Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification. Gainesville: University Press of Florida, pp. 2034.Google Scholar
Larsen, C.S., Shavit, R. & Griffin, M.C. 1991. Dental Caries Evidence for Dietary Change: An Archaeological Context. In: Kelley, M.A. and Larsen, C.S., eds. Advances in Dental Anthropology. New York: Wiley-Liss, pp. 179202.Google Scholar
Lillie, M.C. 1996. Mesolithic and Neolithic Populations in Ukraine: Indications of Diet from Dental Pathology. Current Anthropology, 3 (1): 135–42.Google Scholar
Lillie, M.C. 2008. The Trypilian Culture in Context. In: Ciuk, K., ed. Mysteries of Ancient Ukraine: The Remarkable Trypilian Culture. Toronto: Royal Ontario Museum, pp. 1116.Google Scholar
Lillie, M.C., Budd, C. & Potekhina, I. 2011. Stable Isotope Analysis of Prehistoric Populations from the Cemeteries of the Middle and Lower Dnieper Basin, Ukraine. Journal of Archaeological Science, 38 (1): 5768.Google Scholar
Lillie, M.C. & Jacobs, K. 2006. Stable Isotope Analysis of 14 Individuals from the Mesolithic Cemetery of Vasilyevka II, Dnieper Rapids Region, Ukraine. Journal of Archaeological Science, 33 (6): 880–86.Google Scholar
Lillie, M.C. & Richards, M. 2000. Stable Isotope Analysis and Dental Evidence of Diet at the Mesolithic-Neolithic Transition in Ukraine. Journal of Archaeological Science, 27 (10): 965–72.Google Scholar
Lillie, M.C., Richards, M.P. & Jacobs, K. 2003. Stable Isotope Analysis of 21 Individuals from the Epipalaeolithic Cemetery of Vasilyevka III, Dnieper Rapids Region, Ukraine. Journal of Archaeological Science, 30 (6): 743–52.Google Scholar
Lovejoy, C.O. 1985. Dental Wear in the Libben Populations: Its Functional Pattern and Role in the Determination of Adult Skeletal Age at Death. American Journal of Physical Anthropology, 68 (1): 4756.CrossRefGoogle ScholarPubMed
Lukacs, J.R. 1992. Dental Paleopathology and Agricultural Intensification in South Asia: New Evidence from Bronze Age Harappa. American Journal of Physical Anthropology, 87 (2): 133–50.Google Scholar
Lukacs, J.R. 1995. The ‘Caries Correction Factor’: A New Method of Calibrating Dental Caries Rates to Compensate for Antemortem Loss of Teeth. International Journal of Osteoarchaeology, 5 (2): 151–56.CrossRefGoogle Scholar
Lukacs, J.R. 2008. Fertility and Agriculture Accentuate Sex Differences in Dental Caries Rates. Current Anthropology, 49 (5): 901–14.Google Scholar
Lukacs, J.R. & Largaespada, L.L. 2006. Explaining Sex Differences in Dental Caries Prevalence: Saliva, Hormones, and ‘Life-History’ Etiologies. American Journal of Human Biology, 18 (4): 540555.Google Scholar
Lukacs, J.R. & Minderman, L.L. 1992. Dental Pathology and Agricultural Intensification from Neolithic to Chalcolithic Periods at Mehrgarh (Baluchistan, Pakistan). Monographs in World Archaeology, 14: 167–79.Google Scholar
Maat, G.J.R. & Van der Velde, E.A. 1987. The Caries-Attrition Competition. International Journal of Anthropology, 2 (4): 281–82.Google Scholar
Markova, O.V. 2008. Archaeozoological Research on the Trypilian Culture. In: Ciuk, K., ed. Mysteries of Ancient Ukraine: The Remarkable Trypilian Culture. Toronto: Royal Ontario Museum, pp. 7980.Google Scholar
Meiklejohn, C., Wyman, J.M. & Schentag, C.T. 1992. Caries and Attrition: Dependent or Independent Variables? International Journal of Anthropology, 7 (1): 1722.CrossRefGoogle Scholar
Meiklejohn, C. & Zvelebil, M. 1991. Health Status of European Populations at the Agricultural Transition and the Implications for the Adoption of Farming. In: Bush, H. and Zvelebil, M., eds. Health in Past Societies: Biocultural Interpretations of Human Skeletal Remains in Archaeological Contexts. British Archaeological Reports International Series 567. Oxford: Tempus Reparatum, pp. 129–44.Google Scholar
Meindl, R.S. & Lovejoy, C.O. 1985. Ectocranial Suture Closure: A Revised Method for the Determination of Skeletal Age at Death based on the Lateral-Anterior Sutures. American Journal of Physical Anthropology, 68 (1): 5766.CrossRefGoogle ScholarPubMed
Moore, W.J. & Corbett, M.E. 1971. The Distribution of Dental Caries in Ancient British Populations: Anglo-Saxon Period. Caries Research, 5 (2): 151–68.Google Scholar
Nelson, G.C., Lukacs, J.R. & Yule, R. 1999. Dates, Caries, and Early Tooth Loss During the Iron Age of Oman. American Journal of Physical Anthropology, 108 (3): 333–43.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Nikitin, A.G., Sokhatsky, M.P., Kovaliukh, M.M. & Videiko, M.Y. 2010. Comprehensive Site Chronology and Ancient Mitochondrial DNA Analysis from Verteba Cave — a Trypillian Culture Site of Eneolithic Ukraine. Interdisciplinaria Archaeologica, 1 (1): 918.Google Scholar
O'Connell, T.C., Levine, M. & Hedges, R.E.M. 2000. The Importance of Fish in the Diet of Central Eurasian Peoples from the Mesolithic to the Early Iron Age. In: Levine, M.A., Renfrew, C. and Boyle, K., eds. Prehistoric Steppe Adaptation and the Horse. Cambridge: McDonald Institute of Monograph, pp. 253–68.Google Scholar
O'Sullivan, E.A., Williams, S.A., Wakefield, R.C., Cape, J.E. & Curzon, M.E.J. 1993. Prevalence and Site Characteristics of Dental Caries in Primary Molar Teeth from Prehistoric Times to the 18th Century in England. Caries Research, 27 (2): 147–53.Google Scholar
Papathanasiou, A. 2005. Health Status of the Neolithic Population from Alepotrypa Cave, Greece. American Journal of Physical Anthropology, 126 (4): 377–90.Google Scholar
Pashkevych, H.O. 2004. Gathering and Usage of Vegetable Resources. In: Videiko, M., ed. Encyclopedia of the Tripolian Civilization. Kiev: Ukrpoligraphmedia, pp. 149–50.Google Scholar
Pashkevych, H.O. 2008. Palaeobotanical Research into the Trypilian Culture. In: Ciuk, K., ed. Mysteries of Ancient Ukraine: The Remarkable Trypilian Culture. Toronto: Royal Ontario Museum, pp. 7578.Google Scholar
Pietrusewsky, M. & Douglas, M.T. 2001. Intensification of Agriculture at Ban Chiang: Is There Evidence from the Skeletons? Asian Perspectives, 40 (2): 157–78.Google Scholar
Privat, K.L., O'Connell, T.C. & Hedges, R.E.M. 2007. The Distinction between Freshwater- and Terrestrial-Based Diets: Methodological Concerns and Archaeological Applications of Sulphur Stable Isotope Analysis. Journal of Archaeological Science, 34: 1197–204.Google Scholar
Rassamakin, Y. 2012. Absolute Chronology of Ukrainian Tripolian Settlements. In: Menotti, F. and Korvin-Piotrovskiy, A.G., eds. The Tripolye Culture: Giant-Settlements in Ukraine: Formation, Development, and Decline. Oxford: Oxbow Books, pp. 1969.CrossRefGoogle Scholar
Roberts, C. & Cox, M. 2007. The Impact of Economic Intensification and Social Complexity on Human Health in Britain from 6000 BP (Neolithic) and the Introduction of Farming to the Mid-Nineteenth Century AD. In: Cohen, M.N. and Crane-Kramer, G.M.M., eds. Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification. Gainesville: University Press of Florida, pp. 149–63.Google Scholar
Rudney, J.D., Katz, R.V. & Brand, J.W. 1983. Interobserver Reliability of Methods of Paleopathological Diagnosis of Dental Caries. American Journal of Physical Anthropology, 62 (3): 243–48.Google Scholar
Ryzhov, S.N. 2012. Relative Chronology of the Giant-Settlement Period BII-CI. In: Menotti, F. and Korvin-Piotrovskiy, A.G., eds. Tripolye Culture Giant-Settlements in Ukraine: Formation, Development, and Decline. Oxford: Oxbow Books, pp. 79115.CrossRefGoogle Scholar
Smits, L. & van der Placht, J. 2009. Mesolithic and Neolithic Human Remains in the Netherlands: Physical Anthropological and Stable Isotope Investigations. Journal of Archaeology in the Low Countries, 1 (1): 5585.Google Scholar
Tayles, N., Domett, K. & Nelsen, K. 2000. Agriculture and Dental Caries? The Case of Rice in Prehistoric Southeast Asia. World Archaeology, 32 (1): 6883.CrossRefGoogle ScholarPubMed
Telegin, D.J. 1987. Neolithic Cultures of Ukraine and Adjacent Areas and their Chronology. Journal of World Prehistory, 1 (3): 307–31.Google Scholar
Temple, D.H. & Larsen, C.S. 2007. Dental Caries Prevalence as Evidence for Agriculture and Subsistence Variation During the Yayoi Period in Prehistoric Japan: Biocultural Interpretations of an Economy in Transition. American Journal of Physical Anthropology, 134 (4): 501–12.CrossRefGoogle ScholarPubMed
Turner, C.G. 1979. Dental Anthropological Indications of Agriculture among the Jomon People of Central Japan. American Journal of Physical Anthropology, 51 (4): 619–36.Google Scholar
Ubelaker, D.H. 1989. The Estimation of Age at Death from Immature Human Bone. In: Iscan, M.Y., ed. Age Markers in the Human Skeleton. Springfield: Charles C. Thomas, pp. 5570.Google Scholar
Viera, A.J. & Garrett, J.M. 2005. Understanding Interobserver Agreement: The Kappa Statistic. Family Medicine, 37 (5): 360–63.Google Scholar
Walker, P.L. 2008. Sexing Skulls Using Discriminant Function Analysis of Visually Assessed Traits. American Journal of Physical Anthropology, 136 (1): 3950.Google Scholar
Walker, P.L. & Hewlett, B.S. 1990. Dental Health, Diet, and Social Status among Central African Foragers and Farmers. American Anthropologist, 92 (2): 383–98.Google Scholar
Watson, J.T. 2008. Prehistoric Dental Disease and the Dietary Shift from Cactus to Cultigens in Northwest Mexico. International Journal of Osteoarchaeology, 18 (2): 202–12.Google Scholar
Watson, J.T., Ovalle, I.M. & Arriaza, B.T. 2010. Formative Adaptations, Diet, and Oral Health in the Azapa Valley of Northwest Chile. Latin American Antiquity, 21 (4): 423–39.Google Scholar
Zbenovich, V.G. 1996. The Tripolye Culture: Centenary of Research. Journal of World Prehistory, 10 (2): 199241.Google Scholar
Zhuralev, O.G. 2008. Stock-Breeding and Hunting of the Tripolian Tribes of the Territory of Ukraine. Kiev: Shliakh.Google Scholar
Zvelebil, M. & Dolukhanov, P. 1991. The Transition to Farming in Eastern and Northern Europe. Journal of World Prehistory, 5 (3): 233–78.Google Scholar