The parabolic equation \[u_t + u_{xxxx} + u_{xx} = - (|u_x|^\alpha)_{xx}, \qquad \alpha>1\], is studied under the boundary conditions $u_x|_{\partial\Omega}=u_{xxx}|_{\partial\Omega}=0$ in a bounded real interval $\Omega$. Solutions from two different regularity classes are considered: It is shown that unique mild solutions exist locally in time for any $\alpha>1$ and initial data $u_0 \in W^{1,q}(\Omega)$ ($q>\alpha$), and that they are global if $\alpha \le \frac{5}{3}$. Furthermore, from a semidiscrete approximation scheme global weak solutions are constructed for $\alpha < \frac{10}{3}$, and for suitable transforms of such solutions the existence of a bounded absorbing set in $L^1(\Omega)$ is proved for $\alpha \in [2,\frac{10}{3})$. The article closes with some numerical examples which do not only document the roughening and coarsening phenomena expected for thin film growth, but also illustrate our results about absorbing sets.