Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T06:20:33.877Z Has data issue: false hasContentIssue false

Synchrony in networks of coupled non-smooth dynamical systems: Extending the master stability function

Published online by Cambridge University Press:  28 March 2016

STEPHEN COOMBES
Affiliation:
Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK email: [email protected]; [email protected]
RÜDIGER THUL
Affiliation:
Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK email: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The master stability function is a powerful tool for determining synchrony in high-dimensional networks of coupled limit cycle oscillators. In part, this approach relies on the analysis of a low-dimensional variational equation around a periodic orbit. For smooth dynamical systems, this orbit is not generically available in closed form. However, many models in physics, engineering and biology admit to non-smooth piece-wise linear caricatures, for which it is possible to construct periodic orbits without recourse to numerical evolution of trajectories. A classic example is the McKean model of an excitable system that has been extensively studied in the mathematical neuroscience community. Understandably, the master stability function cannot be immediately applied to networks of such non-smooth elements. Here, we show how to extend the master stability function to non-smooth planar piece-wise linear systems, and in the process demonstrate that considerable insight into network dynamics can be obtained. In illustration, we highlight an inverse period-doubling route to synchrony, under variation in coupling strength, in globally linearly coupled networks for which the node dynamics is poised near a homoclinic bifurcation. Moreover, for a star graph, we establish a mechanism for achieving so-called remote synchronisation (where the hub oscillator does not synchronise with the rest of the network), even when all the oscillators are identical. We contrast this with node dynamics close to a non-smooth Andronov–Hopf bifurcation and also a saddle node bifurcation of limit cycles, for which no such bifurcation of synchrony occurs.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Cambridge University Press 2016

References

[1] Newman, M. E. J. (2010) Networks: An Introduction, Oxford University Press, Oxford.Google Scholar
[2] Arenas, A., Díaz-Guilera, A. & Pérez-Vicente, C. J. (2006) Synchronization processes in complex networks. Physica D 224, 2734.Google Scholar
[3] Porter, M. A. and Gleeson, J. P. (2016) Dynamical systems on networks: A tutorial. Frontiers Appl. Dyn. Syst.: Rev. Tutorials 4, 179.Google Scholar
[4] Lazer, A. C. & McKenna, P. J. (1990) Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 32, 537578.Google Scholar
[5] Andronov, A., Vitt, A. & Khaikin, S. (1966) Theory of Oscillators, Pergamon Press, Oxford.Google Scholar
[6] Acary, V., Bonnefon, O. & Brogliato, B. (2011) Nonsmooth Modeling and Simulation for Switched Circuits, Lecture notes in Electrical Engineering, Vol. 69, Springer, Dordrecht.Google Scholar
[7] di Bernardo, M., Budd, C., Champneys, A. R. & Kowalczyk, P. (2008) Piecewise-smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences, Springer Springer-Verlag, London.Google Scholar
[8] McKean, H. P. (1970) Nagumo's equation. Adv. Math. 4, 209223.CrossRefGoogle Scholar
[9] Fitzhugh, R. (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445466.CrossRefGoogle ScholarPubMed
[10] Bishop, S. R. (1994) Impact oscillators. Phil. Trans.: Phys. Sci. Eng. 347, 347351.Google Scholar
[11] Coombes, S., Thul, R. & Wedgwood, K. C. A. (2012) Nonsmooth dynamics in spiking neuron models. Physica D 241, 20422057.Google Scholar
[12] Thul, R. & Coombes, S. (2010) Understanding cardiac alternans: A piecewise linear modelling framework. Chaos 20, 045102.Google Scholar
[13] Makarenkov, O. & Lamb, J. S. W. (2012) Dynamics and bifurcations of nonsmooth systems: A survey. Physica D 241, 18261844.CrossRefGoogle Scholar
[14] Pecora, L. M. & Carroll, T. L. (1998) Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 21092112.Google Scholar
[15] Ponce, E. (2014) Bifurcations in piecewise linear systems: Case studies. In: VI Workshop on Dynamical Systems - MAT 70 An International Conference on Dynamical Systems celebrating the 70th birthday of Marco Antonio Teixeira. Electronically available at http://www.ime.unicamp.br/~rmiranda/mat70/MAT70/Welcome_files/NotesMAT70EPN.pdf Google Scholar
[16] di Bernardo, M., Budd, C. J., Champneys, A. R., Kowalczyk, P., Nordmark, A. B., Tost, G. O. & Piiroinen, P. T. (2008) Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50, 629701.Google Scholar
[17] di Bernardo, M., Feigin, M. I., Hogan, S. J. & Homer, M. E. (1999) Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems. Chaos, Solitons Fractals 10, 18811908.Google Scholar
[18] Harris, J. & Ermentrout, B. (2015) Bifurcations in the Wilson-Cowan equations with nonsmooth firing rate. SIAM J. Appl. Dyn. Syst. 14, 4372.Google Scholar
[19] Leine, R. I., Van Campen, D. H. & Van de Vrande, B. L. (2000) Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105164.Google Scholar
[20] Filippov, A. F. (1988) Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Norwell.Google Scholar
[21] Tonnelier, A. (2007) McKean model. Scholarpedia 12071 doi:10.4249/scholarpedia.2795.Google Scholar
[22] Tonnelier, A. (2002) The McKean's caricature of the FitzHugh-Nagumo model I. The space-clamped system. SIAM J. Appl. Math. 63, 459484.Google Scholar
[23] Rinzel, J. (1975) Spatial stabillty of traveling wave solutions of a nerve conduction equation. Biophys. J. 15, 975988.Google Scholar
[24] Simpson, D. J. W. & Meiss, J. D. (2007) Andronov–Hopf bifurcations in planar, piecewise-smooth, continuous flows. Phys. Lett. A 371, 213220.CrossRefGoogle Scholar
[25] Xu, B., Yang, F., Tang, Y. & Lin, M. (2013) Homoclinic bifurcations in planar piecewise-linear systems. Discrete Dyn. Nature Soc. 2013, 19.Google Scholar
[26] Llibre, J., Novaes, D. D. & Teixeira, M. A. (2015) Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differentiable center with two zones. Int. J. Bifurcation Chaos 25, 1550144.Google Scholar
[27] Du, Z., Li, Y. & Zhang, W. (2008) Bifurcation of periodic orbits in a class of planar Filippov systems. Nonlinear Anal.: Theory, Methods Appl. 69, 36103628.Google Scholar
[28] Afraimovich, V. S., Gonchenko, S. V., Lerman, L. M., Shilnikov, A. L. & Turaev, D. V. (2014) Scientific heritage of L. P. Shilnikov. Regular Chaotic Dyn. 19 (4), 435460.Google Scholar
[29] Neimark, Y. I. & Shil'nikov, L. P. (1959) Application of the small-parameter method to a system of differential equations with discontinuous right-hand sides. Izv. Akad. Nauk SSSR 6, 5159.Google Scholar
[30] Neimark, Y. I. & Shil'nikov, L. P. (1960) The study of dynamical systems close to the piecewise linear. Radio Phys. 3, 478495.Google Scholar
[31] Pikovsky, A., Rosenblum, M. & Kurths, J. (2001) Synchronization. Cambridge Nonlinear Science Series, Vol. 12, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
[32] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. (2008) Synchronization in complex networks. Phys. Rep. 469, 93153.Google Scholar
[33] Ladenbauer, J., Lehnert, J., Rankoohi, H., Dahms, T., Schöll, E. & Obermayer, K. (2013) Adaptation controls synchrony and cluster states of coupled threshold-model neurons. Phys. Rev. E 88, 042713(1–9).CrossRefGoogle ScholarPubMed
[34] Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E. & Roy, R. (2014) Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nature Commun. 5 (4079).CrossRefGoogle ScholarPubMed
[35] Steur, E., Tyukin, I. & Nijmeijer, H. (2009) Semi-passivity and synchronization of diffusively coupled neuronal oscillators. Physica D 238, 21192128.Google Scholar
[36] Coombes, S. (1999) Liapunov exponents and mode-locked solutions for integrate-and-fire dynamical systems. Phys. Lett. A 255, 4957.Google Scholar
[37] Coombes, S. (2008) Neuronal networks with gap junctions: A study of piece-wise linear planar neuron models. SIAM J. Appl. Dyn. Syst. 7, 11011129.Google Scholar
[38] Bergner, A., Frasca, M., Sciuto, G., Buscarino, A., Ngamga, E. J., Fortuna, L. & Kurths, J. (2012) Remote synchronization in star networks. Phys. Rev. E 85, 026208.CrossRefGoogle ScholarPubMed
[39] Frasca, M., Bergner, A., Kurths, J. & Fortuna, L. (2012) Bifurcations in a star-like network of Stuart-Landau oscillators. Int. J. Bifurcation Chaos 22, 1250173.Google Scholar
[40] Zhao, L., Beverlin, B., Netoff, T. & Nykamp, D. Q. (2011) Synchronization from second order network connectivity statistics. Frontiers Comput. Neurosci. 5 (28), 116.Google Scholar
[41] Lodato, I., Boccaletti, S. & Latora, V. (2007) Synchronization properties of network motifs. Europhys. Lett. 65, 28001.Google Scholar
[42] Ashwin, P., Coombes, S. & Nicks, R. (2016) Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6 (2).Google Scholar
[43] Hoppensteadt, F. C. & Izhikevich, E. M. (1997) Weakly Connected Neural Networks, Springer, New York.Google Scholar
[44] Simpson, D. J. W. & Kuske, R. (2011) Mixed-mode oscillations in a stochastic, piecewise-linear system. Physica D 240, 11891198.Google Scholar
[45] MacArthur, B. D., Sanchez-Garcia, R. J. & Anderson, J. W. (2008) Symmetry in complex networks. Discrete Appl. Math. 156, 3525.CrossRefGoogle Scholar
[46] Izhikevich, E. M. (2003) Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 15691572.Google Scholar
[47] Coombes, S. & Zachariou, M. (2009) Gap junctions and emergent rhythms. In: Coherent Behavior in Neuronal Networks, Computational Neuroscience Series, Springer, Dordrecht pp. 7794.Google Scholar