Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T02:25:44.410Z Has data issue: false hasContentIssue false

Symmetrization of interface dynamics equations

Published online by Cambridge University Press:  16 July 2009

Leonid K. Antanovskii
Affiliation:
Lavrentyev Institute of Hydrodynamics, Novosibirsk 630090, USSR

Abstract

The system of conservation laws governing heat and mass transfer processes in a continuous medium is obtained in a symmetric form on the basis of the successive application of fundamental thermodynamic principles. This approach involves reformulating the problem in intensive thermodynamic variables such as the temperature and chemical potential. The equations of capillary fluid mechanics and phase transitions with moving free boundaries are analysed in detail. The unsteady motion of a drop driven by buoyancy forces in an unbounded ambient fluid with dilute surfactants is investigated where the LeChatelier principle is established for an arbitrary surfactant. The general procedure for construction of self-similar solutions for the thermodiffusive Stefan problem with piecewise constant matrices of coefficients is described

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antanovskii, L. K. 1988 Influence of capillary forces on the transient motion of a drop in homogeneous fluid. In: Hydrodynamics and Heat/Mass Transfer under Weightlessness. Novosibirsk, 95102 [in Russian].Google Scholar
Antanovskii, L. K. 1990 a Symmetrization of the equations of capillary fluid dynamics. Zh. Prikl. Mekh. Tekh. Fez. 6, 128–31.Google Scholar
Antanovskii, L. K. 1990 b Symmetrization of phase-change equations. Dinamika Sploshnoi Sredy 96, 101–9 [in Russian].Google Scholar
Antanovskii, L. K. & Kopbosynov, B. K. 1986 Nonstationary thermocapillary drift of a drop of viscous liquid. Zh. Priki. Mekh. Tekh. FEz. 2, 5964.Google Scholar
Atthey, D. R. 1974 A finite-difference scheme for melting problems. J. Inst. Math. Applics. 13, 353–66.Google Scholar
Boillat, G. 1982 Symmétrization des systèmes d'équations aux dérivèes partielles avec densité d'énergie convexe et contraintes. C. R. Acad. Sci. (Serf) 295 (9), 551–4 [in French].Google Scholar
Crowley, A. B. & Ockendon, J. R. 1979 On the numerical solution of an alloy solidification problem. int. J. Heat Mass Transfer 22, 941–7.Google Scholar
Defay, R., Prigogine, I. & Sanfeld, A. 1977 Surface thermodynamics. J. Collold Interface Sci. 58,527–39.Google Scholar
De groot, S. R., & Mazur, P. 1962 Non-Equilibrium Thermodynamics, North-Holland.Google Scholar
Donnelly, J. D. P. 1979 A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Applic. 24, 425–38.CrossRefGoogle Scholar
Friedrichs, K. O. 1978 Conservation equations and the laws of motion in classical physics. Comm. Pure Appl. Math. 31 (1), 123–31.CrossRefGoogle Scholar
Friedrichs, K. O. & Lax, P. D. 1971 Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. USA 68 (8), 1686–8.Google Scholar
Gibbs, J. W. 1948 Collected Works, Vol. 1, Yale University Press.Google Scholar
Godunov, S. K. 1961 An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139, 521–25.Google Scholar
Godunov, S. K. 1971 The symmetric form of magnetohydrodynamics equations. Chislen. Metody Mekh. Sploshnoi Sredy 3 (1), 2634 [in Russian].Google Scholar
Godunov, S. K. & Romenskii, E. I. 1972 Unsteady equations of nonlinear elasticity theory in Euler coordinates. Zh. Prikl. Mekh. Tekh. Fiz. 6, 124–44.Google Scholar
Götz, I. G. & Meirmanov, A. M. 1989 Modeling of binary alloy solidification. Zh. Prikl. Mekh. Tekh. Fiz. 4, 3945.Google Scholar
Hadamard, J. 1911 Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquide visqueux. C. R. Acad. SeE. 152, 1735–8 [in French].Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics, Prentice-Hall.Google Scholar
Harten, A. 1983 On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151–64.Google Scholar
Legros, J. C., Limbourg, Fontaine M. C. & Petre, O. 1984 Influence of a surface tension minimum as a function of temperature on the Marangoni convection. Acta Astronaut. 11 (2), 143–7.Google Scholar
Levich, V. G. 1967 Physico-Chemical Hydrodynamics, Prentice-Hall.Google Scholar
Meirmanov, A. M. 1986 Stefan Problem, Nauka, Novosibirsk [in Russian].Google Scholar
Moeckel, G. P. 1975 Thermodynamics of an interface. Arch. Rat. Mech. Anal. 57 (3), 255–80.CrossRefGoogle Scholar
Morse, P. M. 1964 Thermal Physics, Benjamin.Google Scholar
Myshkis, A. D., Babsky, V. O., Kopaci-Ievsky, N. D., Slobozhanin, L. A. & Tyuptsov, A. D. 1987 Low-Gravity Fluid Mechanics: Mathematical Theory of Capillary Phenomena, Springer-Verlag.Google Scholar
Napolitano, L. G. 1978 Thermodynamics and dynamics of pure interfaces. Ada Astronaut. 5 (9), 655–70.Google Scholar
Napolitano, L. G. 1979 Thermodynamics and dynamics of surface phases. Ada Astronaut. 6 (9), 1093–112.CrossRefGoogle Scholar
Ono, S. & Kondo, S. 1960 Molecular Theory of Surface Tension in Liquids, Springer-Verlag.Google Scholar
Ostrach, S. 1982 Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 313–45.CrossRefGoogle Scholar
Prigogine, I. 1967 Thermodynamics of irreversible Processes, Interscience Publisher.Google Scholar
Pukhnachov, V. V. 1988 Thermocapillary convection under low gravity. Fluid Dynamics Trans. 14, 141220Google Scholar
Rednikov, A. E. & Ryazantsev, Yu. S. 1991 Towards the question of unsteady motion of a drop under the action of capillary and mass forces. (To appear in Zh. Prikl. Mekh. Tekh. Fiz. 4.)Google Scholar
Rockafellar, R. T. 1970 Convex Analysis, Princeton University Press.CrossRefGoogle Scholar
Ruhinstein, L. I. 1971 The Stefan Problem. Amer. Math. Soc.Google Scholar
Rybczynski, M. 1911 Über die fortschreitende Bewegung einer flussigen Kugel in einem zähen Medium. Bull. int. Acad. Pol. Sci. Cracovia (Ser.A) 1,40–6 [in German].Google Scholar
Scriven, L. E. & Sterling, C. V. 1960 The Marangoni effects. Nature 187 (4733), 186–8.Google Scholar
Shugrin, S. M. 1969 On a class of quasilinear systems. Dinamika Sploshnoi Sredy 2, 145–8 [in Russian].Google Scholar
Sy, F. & Ltghtfoot, E. N. 1971 Transient creeping flow around fluid spheres. Amer. Inst. Chem. Eng. J. 17 (1), 177–81.Google Scholar
Visintin, A. 1987 Coupled thermal and electromagnetic evolution in a ferromagnetic body. ZAMM 67 (9), 409–17.Google Scholar
Wilson, D. G., Solomon, A. D. & Alexiades, V. 1982 A shortcoming of the explicit solution for the binary alloy solidification problem. Lett. Heat Mass Trans. 9, 421–8.Google Scholar
Wilson, D. G., Solomon, A. D. & Alexiades, V. 1984 A model of binary alloy solidification. Int. J. Numer. Meth. Eng. 20, 1067–84.Google Scholar
Woods, L. C. 1986 The Thermodynamics of Fluid Systems, Oxford University Press.Google Scholar