Published online by Cambridge University Press: 14 April 2016
In the first part of this article, we extend the formal upscaling of a diffusion–precipitation model through a two-scale asymptotic expansion in a level set framework to three dimensions. We obtain upscaled partial differential equations, more precisely, a non-linear diffusion equation with effective coefficients coupled to a level set equation. As a first step, we consider a parametrization of the underlying pore geometry by a single parameter, e.g. by a generalized “radius” or the porosity. Then, the level set equation transforms to an ordinary differential equation for the parameter. For such an idealized setting, the degeneration of the diffusion tensor with respect to porosity is illustrated with numerical simulations. The second part and main objective of this article is the analytical investigation of the resulting coupled partial differential equation–ordinary differential equation model. In the case of non-degenerating coefficients, local-in-time existence of at least one strong solution is shown by applying Schauder's fixed point theorem. Additionally, non-negativity, uniqueness, and global existence or existence up to possible closure of some pores, i.e. up to the limit of degenerating coefficients, is guaranteed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.