Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T08:48:09.077Z Has data issue: false hasContentIssue false

The semilinear heat equation with a Heaviside source term

Published online by Cambridge University Press:  16 July 2009

Roberto Gianni
Affiliation:
Dipartimento di Matematica ‘Ulisse Dini’, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
Josephus Hulshof
Affiliation:
Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract

We consider the initial value problem for the equation ut = uxx + H(u), where H is the Heaviside graph, on a bounded interval with Dirichlet boundary conditions, and discuss existence, regularity and uniqueness of solutions and interfaces.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Norbury, J. & Stuart, A. M. 1989 A model for porous medium combustion. Quart. J. Mech. Appl. Math. 42, 159178.CrossRefGoogle Scholar
[2]Norbury, J. & Stuart, A. M. 1987 Parabolic free boundary problems arising in porous medium combustion. IMA J. Appl. Math. 39, 241257.CrossRefGoogle Scholar
[3]Lacey, A. A. 1981 The spatial dependence of supercritical reacting systems. IMA J. Appl. Math. 27, 7184.CrossRefGoogle Scholar
[4]Rinzel, J. & Keller, J. B. 1973 Travelling wave solutions of a nerve conducting equation. Biophysics J. 13, 13131337.CrossRefGoogle ScholarPubMed
[5]Friedman, A. & Tzavaras, A. E. 1988 Combustion in a porous medium. Siam J. Math. Anal. 19 (3), 509519.CrossRefGoogle Scholar
[6]Gianni, R. & Manucci, P. 1992 Existence theorems for a free boundary problem in combustion theory. (To appear in Quart. Appl. Math.)CrossRefGoogle Scholar
[7]Gianni, R. & Manucci, P. 1991 Some Existence Theorems for an N-dimensional Parabolic Equation with a Discontinuous Source Term. Preprint.Google Scholar
[8]Aguirre, J. & Escobedo, M. 1986sol;1987 A Cauchy problem for u - δu = u with 0 < p < 1. Ann. Sci Fac. Toulouse 8, 175203.CrossRefGoogle Scholar
[9]Ladyzenskaja, O. A., Solonnikov, V. A. & Ural'ceva, N. N. 1968 Linear and quasi-linear equations of parabolic type. Trans. A.M.S., Rhode Island.Google Scholar
[10]Hulshof, J. 1987 An elliptic-parabolic free boundary problem: continuity of the interface. Proc. Roy. Soc. Edin. 106 A, 327339.CrossRefGoogle Scholar
[11]Guillemin, V. & Pollack, A. 1974 Differential Topology. Prentice Hall.Google Scholar
[12]Bertsch, M. & Hulshof, J. 1986 Regularity results for an elliptic-parabolic free boundary problem. Trans. A.M.S. 297 (1), 337350.CrossRefGoogle Scholar
[13]Hilhorst, D. & Hulshof, J. 1992 An elliptic-parabolic problem in combustion theory:convergence to travelling waves. (To appear in J. Nonl. Anal.)CrossRefGoogle Scholar