Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T08:01:21.546Z Has data issue: false hasContentIssue false

Propagation of frontal polymerization—crystallization waves

Published online by Cambridge University Press:  26 September 2008

Vit. Volpert
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
Vl. Volpert
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA

Abstract

We consider polymerization–crystallization waves in a cylindrical reactor, in which monomer is converted to polymer in a planar front. The polymer is subsequently crystallized in a wider zone behind the front. Specifically, we study uniformly propagating polymerization–crystallization waves, and determine profiles of temperature, and concentrations of polymer and crystallized polymer, as well as the propagation velocity. A linear stability analysis of the travelling wave solutions indicates the possibility of Hopf bifurcation, which describes the transition to the experimentally observed spinning mode of propagation, in which a hot spot is observed to propagate along a helical path on the surface of the cylinder. Since conditions at the time of conversion determine the nature of the polymer produced, spiral hollows, which trace out a helical path, appear on the surface of the crystallized polymer product.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aldushin, A. P. & Kasparyan, S. G. 1979 Thermodiffusional instability of a combustion front. Soviet Physics–Doklady 24, 2931.Google Scholar
[2]Aldushin, A. P., Lugovoi, V. D., Merzhanov, A. G. & Khaikin, B. I. 1978 Conditions for degeneration of a steady combustion wave. Soviet Physics–Doklady 23, 914916.Google Scholar
[3]Babadzhanyan, A. S., Volpert, Vit. A., Volpert, Vl. A., Davtyan, S. P. & Megrabova, I. N. 1988 Frontal regimes of an exothermal reaction with radially symmetric injection of reagents. Combustion, Explosion and Shock Waves 24 (6), 711719.CrossRefGoogle Scholar
[4]Babadzhanyan, A. S., Volpert, Vit. A., Volpert, Vl. A., Davtyan, S. P. & Megrabova, I. N. 1988 Stability of frontal regimes for the occurrence of an exothermic reaction with radially symmetric supply of the reagents. Combustion, Explosion and Shock Waves 25 (1),2331.CrossRefGoogle Scholar
[5]Barenblatt, G. I., Zeldovich, Ya. B. & Istratov, A. G. 1962 Diffusive-thermal stability of a laminar flame. Zh. Prikl. Mekh. Tekh. Fiz. 4, 21 (in Russian).Google Scholar
[6]Begishev, V. P., Kipin, I. A., Andrianova, Z. S. & Malkin, A. Ya. 1983 Heterogeneous non-isothermal crystallization of polymers. Polymer Science U.S.S.R. 25, 28392845.CrossRefGoogle Scholar
[7]Begishev, V. P., Volpert, V. A., Davtyan, S. P. & Malkin, A. Ya. 1984 Some features of the anionic activated ε-caprolactam polymerization under wave propagation conditions. Dokl. Phys. Chemistry 29 (4), 1057–1057.Google Scholar
[8]Bostandzhiyan, S. A., Boyarchenko, V. I., Zhirkov, P. V. & Zinenko, Zh. A. 1979 Low-temperature polymerization conditions in a flow-through reactor. J. Appl. Mech. Tech. Phys. 20 (1), 99104.CrossRefGoogle Scholar
[9]Bostandzhiyan, S. A., Shulikovskaya, M. V. & Davtyan, S. P. 1989 In 6th International School on modelling heat and mass transfer processes in chemical and biochemical reactors. p. 231 Varna.Google Scholar
[10]Butakov, A. A., Maksimov, E. I. & Shkadinsky, K. G. 1978 Theory of chemical displacement reactors. Comb. Expl. Shock Waves 14 (1), 4854.CrossRefGoogle Scholar
[11]Butakov, A. A. & Stessel, E. A. 1979 Influence of convection on occurrence of the exothermic reaction in tubular reactors. Doklady Akademii Nauk SSSR 237 (6), 14221425 (in Russian).Google Scholar
[12]Butakov, A. A. & Zanin, A. M. 1978 Effects of viscosity variation on an exothermic reaction in a flow system. Comb. Expl. Shock Waves 14 (5), 628631.CrossRefGoogle Scholar
[13]Chechilo, N. M., Khvilivitsky, R. Ya. & Enikolopyan, N. S. 1972 The phenomenon of propagation of the polymerization reaction. Dokl. Phys. Chemistry 204 (4–6), 512513.Google Scholar
[14]Chechilo, N. M. & Enikolopyan, N. S. 1974 Structure of the polymerization wave front and propagation mechanism of the polymerization reaction. Dokl. Phys. Chemistry 214 (4–6), 174176.Google Scholar
[15]Chechilo, N. M. & Enikolopyan, N. S. 1975 Effect of the concentration and nature of the initiators on the propagation process in polymerization. Dokl. Phys. Chemistry 111 (4–6), 391394.Google Scholar
[16]Chechilo, N. M. & Enikolopyan, N. S. 1976 Effect of pressure and initial temperature of the reaction mixture during propagation of a polymerization reaction. Dokl. Phys. Chemistry 230 (1–3), 840843.Google Scholar
[17]Davtyan, S. P., Zhirkov, P. V. & Vol'Fson, S. A. 1984 Problems of non-isothermal character in polymerization processes. Russ. Chemical Rev. 53 (2), 150163.CrossRefGoogle Scholar
[18]Frank-Kamenetskii, D. A. 1969 Diffusion and Heat Transfer in Chemical Kinetics. Plenum Press.Google Scholar
[19]Garbey, M., Kaper, H. G., Leaf, G. K. & Matkowsky, B. J. 1990 Nonlinear analysis of condensed phase surface combustion. Euro. J. Appl. Math. 1, 7389.CrossRefGoogle Scholar
[20]Khudyaev, S. I. 1987 On the asymptotic theory of the stationary combustion wave. Khimicheskaya Physica 6 (5), 681691 (in Russian).Google Scholar
[21]Malkin, A. Ya., Navochnik, Yu. B. & Begishev, V. P. 1983 Polym. Process Eng. 1, 71.Google Scholar
[22]Margolis, S. B., Kaper, H. G., Lef, G. K. & Matkowsky, B. J. 1985 Bifurcation of pulsating and spinning reaction fronts in condensed two-phase combustion. Comb. Sci. Tech. 43, 127165.CrossRefGoogle Scholar
[23]Matkowsky, B. J. & Sivashinsky, G. I. 1978 Propagation of a pulsating reaction front in solid fuel combustion. SIAM J. Appl. Math. 35, 465478.CrossRefGoogle Scholar
[24]Matkowsky, B. J. & Sivashinsky, G. I. 1979 An asymptotic derivation of two models in flame theory associated with the constant density approximation. SIAM J. Appl. Math. 37, 686699.CrossRefGoogle Scholar
[25]Matkowsky, B. J. & Volpert, V. 1994 Spiral gasless condensed phase combustion. SIAM J. Appl. Math, (accepted).CrossRefGoogle Scholar
[26]Merzhanov, A. G. 1981 SHS-process: combustion theory and practice. Archivum Combustionis 1 (1–2), 2348.Google Scholar
[27]Merzhanov, A. G. 1990 Self-propagating high-temperature synthesis: twenty years of search and findings. In: Combustion and Plasma Synthesis of High-Temperature Materials, Munir, Z. A. & Holt, J. B., eds., pp. 153, VCH.Google Scholar
[28]Merzhanov, A. G., Filonenko, A. K. & Borovinskaya, I. P. 1973 New phenomena in combustion of condensed systems. Dokl. Phys. Chem, 208, 122125.Google Scholar
[29]Merzhanov, A. G. & Khaikin, B. I. 1988 Theory of combustion waves in a homogeneous media. Prog. Ener. Combust. Sci. 14, 198.CrossRefGoogle Scholar
[30]Munir, Z. A. & Anselmi-Tamburini, U. 1989 Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Material Sci. Rep., A Review J. 3 (7–8), 277365.Google Scholar
[31]Novozhilov, B. V. 1961 The rate of propagation of the front of an exothermic reaction in a condensed phase. Proc. Academy Sci. USSR, Phys. Chem. Sect. 141, 836838.Google Scholar
[32]Shulikovskaya, M. V., Bostandzhiyan, S. A. & Davtyan, S. P. 1989 Frontal radical polymerization in spherical plug-flow reactors. Teor. osnovy khim. technologii 23 (3), 340345 (in Russian).Google Scholar
[33]Vaganov, D. A. 1977 Two-dimensional phenomena in reacting liquid flows, characteristics of which depend on the depth of conversion. Zh. Prikl. Mekh. Tekh. Fiz. 1, 114122 (in Russian).Google Scholar
[34]Volpert, V. A. (Ed.) 1993 Reaction Fronts in Liquids. Preprint No. 153, University Lyon-1.Google Scholar
[35]Volpert, Vit. A., Volpert, Vl. A., Davtyan, S. P., Megrabova, I. N. & Surkov, N. F. 1992 Two-dimensional combustion modes in condensed flow. SIAM J. Appl. Math. 52, 368383.CrossRefGoogle Scholar
[36]Volpert, V. A., Volpert, A. I. & Merzhanov, A. G. 1982 Application of bifurcation theory to investigation of spin waves of combustion. Dokl. Phys. Chemistry 262, 5558.Google Scholar
[37]Volpert, V. A., Volpert, A. I. & Merzhanov, A. G. 1982 Analysis of nonunidimensional combustion regime by bifurcation theory methods. Dokl. Phys. Chemistry 263, 239242.Google Scholar
[38]Volpert, V. A. & Davtyan, S. P. 1983 The problem of wave existence for the process of polymerization and crystallization. Dokl. Akademii Nauk SSSR 268 (1), 6265.Google Scholar
[39]Volpert, V. A., Megraboya, I. N., Davtyan, S. P. & Begishev, V. P. 1985 Propagation of caprolactam polymerization wave. Comb. Expl. Shock Waves 21 (4), 441447.Google Scholar
[40]Zeldovich, YA. B., Barenblatt, G. I., Librovich, V. B. & Makhviladze, G. M. 1985 The Mathematical Theory of Combustion and Explosions. Consultants Bureau, New York.CrossRefGoogle Scholar
[41]Zeldovich, Ya. B. & Frank-Kamenetskii, D. A. 1938 Theory of thermal propagation of flames. Zh. Fiz. Khim. 12, 100 (in Russian).Google Scholar
[42]Zhizhin, G. V. & Segal, A. S. 1988 Hydrodynamic stability of the spherical front of a reaction accompanied by a strong increase in viscosity. Fluid Dynamics 23 (3), 361367.CrossRefGoogle Scholar
[43]Zhizhin, G. V. & Segal, A. S. 1988 Hydrodynamic stability of a cylindrical reaction front associated with a strong increase of viscosity. J. Appl. Mech. Tech. Phys. 29 (2), 216224.CrossRefGoogle Scholar