Published online by Cambridge University Press: 06 February 2007
Sufficient conditions are obtained for the existence of positive periodic solutions of a class of neutral delay differential equations of the form \begin{equation*} \left\{\begin{array}{@{}l@{}} {\normalsize N}^{\prime}{\normalsize (t)=N(t)F[t,N(t),N(t-\tau (t,N(t))),N}^{\prime}{\normalsize (t-\gamma (t)),P(t),P(t-\mu (t))]}\\ {\normalsize P}^{\prime}{\normalsize (t)=-}e(t)P{\normalsize (t)+k(t)N(t)+h(t)N(t-\sigma (t))}\end{array}\right. \end{equation*} by using the theory of topological degree. These results extend substantially the existing relevant existence results in the literature. As a demonstration, applying the obtained analysis results to a real complex neutral Lotka-Volterra population model, the existence criterion for positive periodic solutions is easily obtained and an example is used to give an impression of how restrictive these conditions are. Especially, this method is more suitable to state-dependent delay, and which have further applications in many fields.