Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T14:07:24.911Z Has data issue: false hasContentIssue false

A perturbative approach to the backflow dynamics of nematic defects

Published online by Cambridge University Press:  05 January 2011

PAOLO BISCARI
Affiliation:
Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy email: [email protected]
TIMOTHY J. SLUCKIN
Affiliation:
School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK email: [email protected]

Abstract

We present an asymptotic theory that includes in a perturbative expansion the coupling effects between the director dynamics and the velocity field in a nematic liquid crystal. Backflow effects are most significant in the presence of defect motion, since in this case the presence of a velocity field may strongly reduce the total energy dissipation and thus increase the defect velocity. As an example, we illustrate how backflow influences the speeds of opposite-charged defects.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Friedel, G. (1922) (Extracts from) Les états mésomorphes de la matière (The mesomorphic states of matter). Ann. Phys. – Paris 18, 273474.CrossRefGoogle Scholar
[2]Mermin, N. D. (1979) The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591648.CrossRefGoogle Scholar
[3]Kléman, M. (1989) Defects in liquid crystals. Rep. Prog. Phys. 52, 555654.CrossRefGoogle Scholar
[4]Kléman, M. & Friedel, J. (2008) Disclinations, dislocations, and continuous defects: A reappraisal. Rev. Mod. Phys. 80, 61115.CrossRefGoogle Scholar
[5]Biscari, P. & Guidone Peroli, G. (1997) A hierarchy of defects in biaxial nematics. Commun. Math. Phys. 186, 381392.CrossRefGoogle Scholar
[6]Oseen, C. W. (1933) The theory of liquid crystals. Trans. Faraday Soc. 29, 883900.CrossRefGoogle Scholar
[7]Frank, F. C. (1958) On the theory of liquid crystals. Disc. Faraday Soc. 25, 1928.CrossRefGoogle Scholar
[8]Ericksen, J. L. (1961) Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371378.CrossRefGoogle Scholar
[9]Ericksen, J. L. (1961) Anisotropic fluids. Arch. Ration. Mech. Anal. 9, 231237.Google Scholar
[10]Ericksen, J. L. (1962) Nilpotent energies in liquid crystal theory. Arch. Ration. Mech. Anal. 10, 189196.CrossRefGoogle Scholar
[11]Leslie, F. M. (1968) Some constitutive equations for liquid crystals. Arch. Rat. Mech. Anal. 28, 265283.CrossRefGoogle Scholar
[12]de Gennes, P. G. (1971) Short-range order effects in the isotropic phase of nematics and cholesterics. Mol. Cryst. Liq. Cryst. 12, 193214.CrossRefGoogle Scholar
[13]Olmsted, P. D. & Goldbartr, P. (1990) Theory of the non-equilibrium phase transition for nematic liquid crystals under shear flow. Phys. Rev. A 41, 45784581.CrossRefGoogle Scholar
[14]Olmsted, P. D. & Goldbart, P. (1992) Isotropic-nematic transition in shear flow: State selection, coexistence, phase transitions, and critical behaviour. Phys. Rev. A 46, 45784993.CrossRefGoogle Scholar
[15]Beris, A. N. & Edwards, B. J. (1994) Thermodynamics of Flowing Systems with Internal Microstructure, Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
[16]Schopohl, N. & Sluckin, T. J. (1987) Defect core structure in nematic liquid crystals. Phys. Rev. Lett. 59, 25822584.CrossRefGoogle ScholarPubMed
[17]Volterra, V. (1905) Sull'equilibrio dei corpi elastici più volte connessi. Rend. R. Acc. Lincei 14, 193202.Google Scholar
[18]Love, A. E. H. (1927) A Treatise on the Mathematical Theory of Elasticity, 4th ed., Cambridge University Press, Cambridge, UK.Google Scholar
[19]Burgers, J. M. (1939) Some considerations of the field of stress connected with dislocations in a regular crystal lattice. K. Ned. Akad. Wet. 42, 293325 (Part I), 378–399 (Part II).Google Scholar
[20]Ryskin, G. & Kremenetsky, M. (1991) Drag force on a line defect moving through an otherwise undisturbed field: Disclination line in a nematic liquid crystal. Phys. Rev. Lett. 67, 15741577.CrossRefGoogle Scholar
[21]Denniston, C. (1996) Disclination dynamics in nematic liquid crystals. Phys. Rev. B 54, 62726275.CrossRefGoogle ScholarPubMed
[22]Kats, E. I., Lebedev, V. V. & Malinin, S. V. (2002) Disclination motion in liquid crystalline films. JETP 95, 714727.CrossRefGoogle Scholar
[23]Clark, M. G. & Leslie, F. M. (1978) A calculation of orientational relaxation in nematic liquid crystals. Proc. R. Soc. Lond. A 361, 463485.Google Scholar
[24]Pargellis, A., Turok, N. & Yurke, B. (1991) Monopole–antimonopole annihilation in a nematic liquid crystal. Phys. Rev. Lett. 67, 15701573.CrossRefGoogle Scholar
[25]Yakutovich, M. V., Newton, C. J. P. & Cleaver, D. J. (2009) Mesh-free simulation of complex LCD geometries. Mol. Cryst. Liq. Cryst. 502, 245257.CrossRefGoogle Scholar
[26]Pismen, L. M. & Rubinstein, B. Y. (1992) Motion of interacting point defects in nematics. Phys. Rev. Lett. 69, 9699.CrossRefGoogle ScholarPubMed
[27]Guidone Peroli, G. & Virga, E. G. (1996) Annihilation of point defects in nematic liquid crystals. Phys. Rev. E 54, 52355241.Google Scholar
[28]Guidone Peroli, G. & Virga, E. G. (1998) Dynamics of point defects in nematic liquid crystals. Physica D 111, 356372.Google Scholar
[29]Biscari, P., Guidone Peroli, G. & Virga, E. G. (1999) A statistical study for evolving arrays of nematic point defects. Liq. Cryst. 26, 18251832.CrossRefGoogle Scholar
[30]Hindmarsh, M. (1995) Where are the hedgehogs in quenched nematics? Phys. Rev. Lett. 75, 25022505.CrossRefGoogle ScholarPubMed
[31]Richardson, G. (2000) Line disclination dynamics in uniaxial nematic liquid crystals. Q. Jl. Mech. Appl. Math. 53, 4971.CrossRefGoogle Scholar
[32]Biscari, P. & Sluckin, T. J. (2005) Field-induced motion of nematic disclinations. SIAM J. Appl. Math. 65, 21412157.CrossRefGoogle Scholar
[33]Denniston, C., Orlandini, E. & Yeomans, J. M. (2000) Simulations of liquid crystal hydrodynamics in the isotropic and nematic phases. Europhys. Lett. 52, 481487.CrossRefGoogle Scholar
[34]Denniston, C., Orlandini, E. & Yeomans, J. M. (2001) Lattice Boltzmann simulations of liquid crystal hydrodynamics. Phys. Rev. E 63, 056702.Google ScholarPubMed
[35]Tóth, G., Denniston, C. & Yeomans, J. M. (2002) Hydrodynamics of topological defects in nematic liquid crystals. Phys. Rev. Lett. 88, 105504.CrossRefGoogle ScholarPubMed
[36]Svenšek, D. & Žumer, S. (2002) Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals. Phys. Rev. E 66, 021712.Google ScholarPubMed
[37]Blanc, C., Svensek, D., Zumer, S. & Nobili, M. (2005) Dynamics of nematic liquid crystal disclinations: The role of the backflow. Phys. Rev. Lett. 95, 097802.CrossRefGoogle ScholarPubMed
[38]Grecov, D. & Rey, A. D. (2004) Impact of texture on stress growth in thermotropic liquid crystalline polymers subjected to step-shear. Rheol. Acta 44, 135149.CrossRefGoogle Scholar
[39]Liu, C., Shen, J. & Yang, X.-F. (2007) Dynamics of defect motion in nematic liquid crystal flow: Modeling and numerical simulation. Commun. Comput. Phys. 2, 11841198.Google Scholar
[40]Abukhdeir, N. M. & Rey, A. D. (2008) Defect kinetics and dynamics of pattern coarsening in a two-dimensional smectic-A system. N. J. Phys. 10, 063025.CrossRefGoogle Scholar
[41]Shoarinejad, S. & Shahzamanian, M. A. (2008) On the numerical study of Frederick transition in nematic liquid crystals. J. Mol. Liq. 138, 1419.CrossRefGoogle Scholar
[42]Kundu, S., Grecov, D., Ogale, A. A. & Rey, A. D. (2009) Shear flow-induced microstructure of a synthetic mesophase pitch. J. Rheol. 53, 85113.CrossRefGoogle Scholar
[43]Viñals, J. (2009) Defect dynamics in mesophases. J. Phys. Soc. Jpn. 78, 041011.CrossRefGoogle Scholar
[44]Véron, A. R. & Martins, A. F. (2009) Tensorial form of Leslie–Ericksen equations and applications. Mol. Cryst. Liq. Cryst. 508, 309336.CrossRefGoogle Scholar
[45]Sonnet, A. M. & Virga, E. G. (2009) Flow and reorientation in the dynamics of nematic defects. Liq. Cryst. 36, 11851192.CrossRefGoogle Scholar
[46]Leonov, A. I. (2005) On the minimum of extended dissipation in viscous nematodynamics. Rheol. Acta 44, 573576.CrossRefGoogle Scholar
[47]de Gennes, P. G. & Prost, J. (1993) The Physics of Liquid Crystals, IInd ed., Clarendon Press, Oxford, UK.CrossRefGoogle Scholar
[48]Parodi, O. (1970) Stress tensor for a nematic liquid crystal. J. Physiq. 31, 581584.CrossRefGoogle Scholar
[49]Stewart, I. W. (2004) The Static and Dynamic Continuum Theory of Liquid Crystals, Ist ed., Taylor & Francis, London.Google Scholar
[50]Majda, A. J. & Bertozzi, A. L. (2002) Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, Ist ed., Vol. 27, Cambridge University Press, Cambridge, UK.Google Scholar
[51]Biscari, P., Sluckin, T. J. & Turzi, S. (2011) (in preparation).Google Scholar