Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T17:11:02.708Z Has data issue: false hasContentIssue false

On the diffusive wave approximation of the shallow water equations

Published online by Cambridge University Press:  01 October 2008

R. ALONSO
Affiliation:
Department of Mathematics, University of Texas Austin, Austin, TX 78712, USA
M. SANTILLANA
Affiliation:
Institute for Computational Engineering and Sciences, University of Texas Austin, Austin, TX 78712, USA email: [email protected]
C. DAWSON
Affiliation:
Institute for Computational Engineering and Sciences, University of Texas Austin, Austin, TX 78712, USA email: [email protected]

Abstract

In this paper, we study basic properties of the diffusive wave approximation of the shallow water equations (DSW). This equation is a doubly non-linear diffusion equation arising in shallow water flow models. It has been used as a model to simulate water flow driven mainly by gravitational forces and dominated by shear stress, that is, under uniform and fully developed turbulent flow conditions. The aim of this work is to present a survey of relevant results coming from the studies of doubly non-linear diffusion equations that can be applied to the DSW equation when topographic effects are ignored. In fact, we present proofs of the most relevant results existing in the literature using constructive techniques that directly lead to the implementation of numerical algorithms to obtain approximate solutions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alt, H. & Luckhaus, S. (1983) Quasilinear elliptic-parabolic differential equations. Mathematische Zeitschrift 183, 311341.Google Scholar
[2]Bamberger, A. (1977) Étude d'une équation doublement non linéaire. J. Funct. Anal. 24, 148155.CrossRefGoogle Scholar
[3]Barenblatt, G. I. (1952) On self-similar motions of compressible fluids in porous media (in Russian). Prikl. Math. Mech., 16, 679698.Google Scholar
[4]Barrett, J. W. & Liu, W. B. (1994) Finite element approximation of the parabolic p-laplacian. SIAM J. Numer. Anal. 31 (2), 413428.Google Scholar
[5]Bernis, F. (1988) Existence results for doubly nonlinear higher order parabolic equations on unbounded domains. Mathematische Annalen 279, 373394.Google Scholar
[6]Blanchard, D. & Francfort, G. (1988) Study of a nonlinear heat equation with no growth assumptions on the parabolic term. SIAM J. Math. Anal. 19 (5), 10321056.CrossRefGoogle Scholar
[7]Bowles, D. S. & O'Connell, P. E. (editors) (1991) Overland Flow: A two dimensional Modeling Approach. In: Recent Advances in the Modeling of Hydrologic Systems, chapter 8, Springer, Dordrecht, Netherlands, pp. 153166.CrossRefGoogle Scholar
[8]Calvo, N., Díaz, J. I., Durany, J., Schiavi, E. & Vázquez, C. (2003) On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics. SIAM J. Appl. Math. 63 (2), 683707.Google Scholar
[9]Carrillo, J. (1999) Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (4), 269361.Google Scholar
[10]Daugherty, R., Franzini, J. & Finnemore, J. (1985) Fluid Mechanics with Engineering Applications, McGraw-Hill, New York, USA.Google Scholar
[11]DiBenedetto, E. (1993) Degenerate Parabolic Equations, Springer-Verlag, New York.CrossRefGoogle Scholar
[12]Di Giammarco, P., Todini, E. & Lamberti, P. (1996) A conservative finite elements approach to overland flow: The control volume finite element formulation. J. Hydrol. 175, 267291.Google Scholar
[13]Esteban, J. R. & Vázquez, J. L. (1988) Homogeneous diffusion in with power-like nonlinear diffusivity. Arch. Rat. Mech. Anal. 103, 3980.Google Scholar
[14]Evans, Lawrence C. (2002) Partial Differential Equations, American Mathematical Society, Providence, RI.Google Scholar
[15]Feng, K. & Molz, F. J. (1997) A 2-d diffusion based, wetland flow model. J. Hydrol. 196, 230250.CrossRefGoogle Scholar
[16]Gioia, G. & Bombardelli, F. A. (2002) Scaling and similarity in rough channel flows. Phys. Rev. Lett. 88 (1), 014501(4).Google ScholarPubMed
[17]Grange, O. & Mignot, F. (1972) Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires. J. Funct. Anal. 11, 7792.Google Scholar
[18]Hromadka, T. V., Berenbrock, C. E., Freckleton, J. R. & Guymon, G. L. (1985) A two-dimensional dam-break flood plain model. Adv. Water Resour. 8, 714.CrossRefGoogle Scholar
[19]Ishige, K. (1996) On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation. SIAM J. Math. Anal. 27 (5), 12351260.Google Scholar
[20]Jain, S. C. (2001) Open-channel flow, John Wiley & Sons, New York, USA.Google Scholar
[21]Lions, J. L. (1969) Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris.Google Scholar
[22]Nochetto, R. H. & Verdi, C. (1988) Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25, 784814.Google Scholar
[23]Pop, I. S. & Yong, W. (2002) A numerical approach to degenerate parabolic equations. Numer. Math. 92 (2), 357381.CrossRefGoogle Scholar
[24]Raviart, P. A. (1970) Sur la résolution de certaines équations paraboliques non linéaires. J. Funct. Anal. 5, 299328.CrossRefGoogle Scholar
[25]Rulla, J. & Walkington, N. J. (1996) Optimal rates of convergence for degenerate parabolic problems in two dimensions. SIAM J. Numer. Anal. 33 (1), 5667.Google Scholar
[26]Santillana, M. & Dawson, C. A numerical approach to study the properties of solutions of the diffusive wave approximation of the shallow water equations. Comput. Geosci. Submitted.Google Scholar
[27]Turner, A. K. & Chanmeesri, N. (1984) Shallow flow of water through non-submerged vegetation. Agri. Water Manage. 8, 375385.Google Scholar
[28]Vázquez, J. L. (2006) The Porous Medium Equation. Mathematical Theory, Oxford University Press, New York, USA.CrossRefGoogle Scholar
[29]Vreugdenhil, C. B. (1994) Numerical Methods for Shallow-Water Flow, Kluwer Academic Publishers, The Netherlands.Google Scholar
[30]Wei, D. & Lefton, L. (1999) A priori Lρ error estimates for galerkin approximations to porous medium and fast diffusion equations. Math. Comput. 68 (227), 971989.Google Scholar
[31]Weiyan, T. (1992) Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for a Two-dimensional System of Shallow Water Equations, Vol. 55, Elsevier, Amsterdam.Google Scholar
[32]Wheeden, R. L. & Zygmund, A. (1977) Measure and Integral: An Introduction to Real Analysis, A series of Monographs and Textbooks, Marcel Dekker, New York.CrossRefGoogle Scholar
[33]Xanthopoulos, Th. & Koutitas, Ch. (1976) Numerical simulation of a two dimensional flood wave propagation due to dam failure. J. Hydraulic Res. 14 (4), 321331.CrossRefGoogle Scholar