Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T10:50:01.916Z Has data issue: false hasContentIssue false

On a family of differential equations for boundary layer approximations in porous media

Published online by Cambridge University Press:  13 August 2001

ZAKARIA BELHACHMI
Affiliation:
Département de Mathématiques, Université de Metz, Ile du Saulcy, 57045 METZ Cedex, France
BERNARD BRIGHI
Affiliation:
Université de Haute Alsace, F.S.T., 4 rue des frères Lumière 68093 Mulhouse Cedex, France
KHALID TAOUS
Affiliation:
Département de Mathématiques, Université de Metz, Ile du Saulcy, 57045 METZ Cedex, France

Abstract

Free convection along a vertical flat plate embedded in a porous medium is considered, within the framework of boundary layer approximations. In some cases, similarity solutions can be obtained by solving a boundary value problem involving an autonomous third-order nonlinear equation, depending on a parameter related to the temperature on the wall. The paper deals with existence and uniqueness questions to this problem, for every value of the parameter.

Type
Research Article
Copyright
2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)