Published online by Cambridge University Press: 01 December 1997
A blob of viscous Newtonian fluid is surrounded by inviscid fluid and sandwiched in the narrow gap between two plane parallel surfaces, so that initially its plan view occupies a simply connected domain. Recently Entov, Etingoff & Kleinbock (1993) produced some steady-state solutions for the blob placed in a quadrupole driven flow, and including the effects of surface tension. Here a numerical solution of the time-dependent problem using a Boundary Integral algorithm finds that for low values of the flow rate there exist two solutions. We find that one, which is close in shape to a circle, is stable, while the other, more deformed equilibrium, is unstable. The analysis also reveals that for certain flow strengths stable non-convex shapes also exist. If the flow strength is too large no stable equilibrium is possible.