Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T07:29:13.507Z Has data issue: false hasContentIssue false

A non-local traffic flow model for 1-to-1 junctions

Published online by Cambridge University Press:  16 December 2019

F. A. CHIARELLO
Affiliation:
Inria Sophia Antipolis - Méditerranée, Université Côte d’Azur, Inria, CNRS, LJAD, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France emails: [email protected]; [email protected]
J. FRIEDRICH
Affiliation:
Department of Mathematics, University of Mannheim, 68131Mannheim, Germany emails: [email protected]; [email protected]; [email protected]
P. GOATIN
Affiliation:
Inria Sophia Antipolis - Méditerranée, Université Côte d’Azur, Inria, CNRS, LJAD, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France emails: [email protected]; [email protected]
S. GÖTTLICH
Affiliation:
Department of Mathematics, University of Mannheim, 68131Mannheim, Germany emails: [email protected]; [email protected]; [email protected]
O. KOLB
Affiliation:
Department of Mathematics, University of Mannheim, 68131Mannheim, Germany emails: [email protected]; [email protected]; [email protected]

Abstract

We present a model for a class of non-local conservation laws arising in traffic flow modelling at road junctions. Instead of a single velocity function for the whole road, we consider two different road segments, which may differ for their speed law and number of lanes (hence their maximal vehicle density). We use an upwind type numerical scheme to construct a sequence of approximate solutions, and we provide uniform L and total variation estimates. In particular, the solutions of the proposed model stay positive and below the maximum density of each road segment. Using a Lax–Wendroff type argument and the doubling of variables technique, we prove the well-posedness of the proposed model. Finally, some numerical simulations are provided and compared with the corresponding (discontinuous) local model.

Type
Papers
Copyright
© The Authors 2019. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adimurthi, S. M. & Gowda, G. V. (2005) Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(04), 783837.CrossRefGoogle Scholar
Aggarwal, A., Colombo, R. M. & Goatin, P. (2015) Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53(2), 963983.CrossRefGoogle Scholar
Amorim, P., Colombo, R. & Teixeira, A. (2015) On the numerical integration of scalar nonlocal conservation laws. ESAIM M2AN 49(1), 1937.CrossRefGoogle Scholar
Andreianov, B., Karlsen, K. H. & Risebro, N. H. (2011) A theory of L1–dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 2786.CrossRefGoogle Scholar
Betancourt, F., Bürger, R., Karlsen, K. H. & Tory, E. M. (2011) On nonlocal conservation laws modelling sedimentation. Nonlinearity 24(3), 855885.CrossRefGoogle Scholar
Blandin, S. & Goatin, P. (2016). Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132(2), 217241.CrossRefGoogle Scholar
Bürger, R., Karlsen, K. H. & Towers, J. D. (2009). An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 16841712.CrossRefGoogle Scholar
Chiarello, F. A. & Goatin, P. (2018) Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: M2AN 52(1), 163180.CrossRefGoogle Scholar
Chiarello, F. A. & Goatin, P. (2019) Non-local multi-class traffic flow models. Netw. Heterog. Media 14(2), 371387.CrossRefGoogle Scholar
Chiarello, F. A., Goatin, P. & Rossi, E. (2019) Stability estimates for non-local scalar conservation laws. Nonlinear Anal. Real World Appl. 45, 668687.CrossRefGoogle Scholar
Colombo, M., Crippa, G., Graff, M. & Spinolo, L. V. (2019) Recent results on the singular local limit for nonlocal conservation laws. arXiv preprint arXiv:1902.06970.Google Scholar
Colombo, R. M., Garavello, M. & Lécureux-Mercier, M. (2012) A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22(04), 1150023.CrossRefGoogle Scholar
Colombo, R. M., Mercier, M. & Rosini, M. D. (2009) Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7(1), 3765.CrossRefGoogle Scholar
Diehl, S. (1995). On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. 26(6), 14251451.CrossRefGoogle Scholar
Diehl, S. (2009) A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 6(01), 127159.CrossRefGoogle Scholar
Eymard, R., Gallouët, T. & Herbin, R. (2000). Finite volume methods. In: Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, pp. 7131020.Google Scholar
Friedrich, J., Kolb, O. & Göttlich, S. (2018). A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterog. Media 13(4), 531547.CrossRefGoogle Scholar
Göttlich, S., Hoher, S., Schindler, P., Schleper, V. & Verl, A. (2014). Modeling, simulation and validation of material flow on conveyor belts. Appl. Math. Model. 38(13), 32953313.CrossRefGoogle Scholar
Gröschel, M., Keimer, A., Leugering, G. & Wang, Z. (2014) Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity. SIAM J. Control Optim. 52(4), 21412163.CrossRefGoogle Scholar
Karlsen, K., Risebro, N. H. & Towers, J. D. (2003). L1–stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 149.Google Scholar
Karlsen, K. H. & Risebro, N. H. (2003) On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete Contin. Dyn. Syst. 9(5), 10811104.CrossRefGoogle Scholar
Karlsen, K. H. & Towers, J. D. (2017). Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J. Hyperbolic Differ. Equ., 14(04), 671701.CrossRefGoogle Scholar
Keimer, A. & Pflug, L. (2017) Existence, uniqueness and regularity results on nonlocal balance laws. J. Differential Equations 263(7), 40234069.CrossRefGoogle Scholar
Keimer, A. & Pflug, L. (2019) On approximation of local conservation laws by nonlocal conservation laws. J. Appl. Math. Anal. Appl. 475(2), 19271955.CrossRefGoogle Scholar
Kružkov, S. N. (1970). First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228255.Google Scholar
Lebacque, J. P. (1996). The Godunov scheme and what it means for first order traffic flow models. In: Proceedings 13th International Symposium on Transportation and Traffic Theory.Google Scholar
Lighthill, M. J. & Whitham, G. B. (1955) On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A. 229, 317345.Google Scholar
Richards, P. I. (1956) Shock waves on the highway. Oper. Res. 4, 4251.CrossRefGoogle Scholar
Shen, W. (Sep 2018). Traveling Waves for Conservation Laws with Nonlocal Flux for Traffic Flow on Rough Roads. arXiv e-prints, arXiv:1809.02998.Google Scholar