Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T19:24:35.015Z Has data issue: false hasContentIssue false

A model for the evolution of the thermal bar system

Published online by Cambridge University Press:  30 October 2012

DUNCAN E. FARROW*
Affiliation:
Mathematics & Statistics, Murdoch University, Murdoch, Perth WA 6150, Australia email: [email protected]

Abstract

A new framework for modelling the evolution of the thermal bar system in a lake is presented. The model assumes that the thermal bar is located between two regions: the deeper region, where spring warming leads to overturning of the entire water column, and the near shore shallower region, where a stable surface layer is established. In this model the thermal bar moves out slightly more quickly than predicted by a simple thermal balance. Also, the horizontal extent of the thermal bar region increases as it moves out from the shore.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Chapman, C. J. & Proctor, M. R. E. (1980) Non-linear Rayleigh-Bénard convection between poorly conducting boundaries. J. Fluid Mech. 101, 749782.Google Scholar
[2]Coates, M. J. & Patterson, J. C. (1993) Unsteady natural-convection in a cavity with nonuniform absorption of radiation. J. Fluid Mech. 256, 133161.Google Scholar
[3]Coates, M. J. & Patterson, J. C. (1994) Numerical simulations of the natural-convection in a cavity with nonuniform internal sources. Int. J. Heat Fluid Flow 15 (3), 218225.Google Scholar
[4]Cormack, D. E., Leal, L. G. & Imberger, J. (1974) Natural convection in a shallow cavity with differentially heated end walls. Part 1. asymptotic theory. J. Fluid Mech. 65, 209229.Google Scholar
[5]Csanady, G. T. (1971) On the equilibrium shape of the thermocline in a shore zone. J. Phys. Oceanogr. 1, 263270.2.0.CO;2>CrossRefGoogle Scholar
[6]Demchenko, N., Chubarenko, I. & van Heijst, G. (2012, April) On the fine structure of the thermal bar front. Environ. Fluid Mech. 12 (2), 161183, 10.1007/s10652-011-9223-2.Google Scholar
[7]Drazin, P. G. & Ried, W. H. (2004) Hydrodynamic Stability, 2nd ed., Cambridge Texts in Appied Mathematics, Cambridge University Press, Cambridge, UK.Google Scholar
[8]Elliott, G. H. (1971) A mathematical study of the thermal bar. In: Proceedings of the 14th Conference on Great Lakes Research, University of Toronto, Ontario, Canada, April 19–21, Intl. Assoc. Great Lakes Res., pp. 545554.Google Scholar
[9]Elliott, G. H. & Elliott, J. A. (1970) Laboratory studies on the thermal bar. In: Proceedings of the 13th Conference on Great Lakes Research, Intl. Assoc. Great Lakes Res., pp. 413418.Google Scholar
[10]Farrow, D. E. (1995a) An asymptotic model for the hydrodynamics of the thermal bar. J. Fluid Mech. 289, 129140.Google Scholar
[11]Farrow, D. E. (1995b) A numerical model of the hydrodynamics of the thermal bar. J. Fluid Mech. 303, 279295.Google Scholar
[12]Farrow, D. E. (2002) A model of the thermal bar in the rotating frame including vertically non-uniform heating. Environ. Fluid Mech. 2, 197218.CrossRefGoogle Scholar
[13]Farrow, D. E. & McDonald, N. R. (2002) Coriolis effects and the thermal bar. J. Geophys. Res. (Oceans) 107 (C5) doi:10.1029/2000JC000727.Google Scholar
[14]Farrow, D. E. & Patterson, J. C. (1994) The daytime circulation and temperature structure in a reservoir sidearm. Int. J. Heat Mass Transfer 37 (13), 19571968.Google Scholar
[15]Gresho, P. M. & Sani, R. L. (1971) The stability of a fluid layer subjected to a step change in temperature: Transient vs. frozen time analysis. Int. J. Heat Mass Transfer 14, 207221.CrossRefGoogle Scholar
[16]Huang, J. C. K. (1972) The thermal bar. Geophys. Fluid Dyn. 3, 128.CrossRefGoogle Scholar
[17]Kreyman, K. D. (1989) Thermal bar based on laboratory experiments. Oceanology 29 (6), 695697.Google Scholar
[18]Malm, J. (1995) Spring circulation associated with the thermal bar in large temperate lakes. Nordic Hydrol. 26, 331358.CrossRefGoogle Scholar
[19]Malm, J., Mironov, D., Terzhevik, A. & Jönsson, L. (1994) Investigation of the sprint thermal regime in Lake Ladoga using field and satellite data. Limnol. Oceanogr. 39 (6), 13331348.Google Scholar
[20]Roberts, A. J. (1985) An analysis of near-marginal, mildly penetrative convection with heat flux prescribed on the boundaries. J. Fluid Mech. 158, 7193.Google Scholar
[21]Zilitinkevich, S. S., Kreiman, K. D. & Terzhivik, A. Yu. (1992) The thermal bar. J. Fluid Mech. 236, 2742.Google Scholar
[22]Zilitinkevich, S. S. & Malm, J. (1993) A theoretical model of thermal bar movement in a circular lake. Nordic Hydrol. 24, 1330.CrossRefGoogle Scholar