Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T12:30:07.108Z Has data issue: false hasContentIssue false

Invasion fronts and adaptive dynamics in a model for the growth of cell populations with heterogeneous mobility

Published online by Cambridge University Press:  08 July 2021

T. LORENZI
Affiliation:
Department of Mathematical Sciences “G. L. Lagrange”, Dipartimento di Eccellenza 2018-2022, Politecnico di Torino, 10129 Torino, Italy email: [email protected]
B. PERTHAME
Affiliation:
Sorbonne Universite, CNRS, Universite de Paris, Inria, Laboratoire Jacques-Louis Lions UMR7598, F-75005 Paris, France emails: [email protected]; [email protected]
X. RUAN
Affiliation:
Department of Mathematical Sciences “G. L. Lagrange”, Dipartimento di Eccellenza 2018-2022, Politecnico di Torino, 10129 Torino, Italy email: [email protected] Sorbonne Universite, CNRS, Universite de Paris, Inria, Laboratoire Jacques-Louis Lions UMR7598, F-75005 Paris, France emails: [email protected]; [email protected]

Abstract

We consider a model for the dynamics of growing cell populations with heterogeneous mobility and proliferation rate. The cell phenotypic state is described by a continuous structuring variable and the evolution of the local cell population density function (i.e. the cell phenotypic distribution at each spatial position) is governed by a non-local advection–reaction–diffusion equation. We report on the results of numerical simulations showing that, in the case where the cell mobility is bounded, compactly supported travelling fronts emerge. More mobile phenotypic variants occupy the front edge, whereas more proliferative phenotypic variants are selected at the back of the front. In order to explain such numerical results, we carry out formal asymptotic analysis of the model equation using a Hamilton–Jacobi approach. In summary, we show that the locally dominant phenotypic trait (i.e. the maximum point of the local cell population density function along the phenotypic dimension) satisfies a generalised Burgers’ equation with source term, we construct travelling-front solutions of such transport equation and characterise the corresponding minimal speed. Moreover, we show that, when the cell mobility is unbounded, front edge acceleration and formation of stretching fronts may occur. We briefly discuss the implications of our results in the context of glioma growth.

Type
Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. (2013) Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13(12), 883.CrossRefGoogle ScholarPubMed
Alfonso, J. C. L., Talkenberger, K., Seifert, M., Klink, B., Hawkins-Daarud, A., Swanson, K. R., Hatzikirou, H. & Deutsch, A. (2017) The biology and mathematical modelling of glioma invasion: a review. J. R. Soc. Interface 14(136), 20170490.CrossRefGoogle ScholarPubMed
Ambrosi, D. & Preziosi, L. (2002) On the closure of mass balance models for tumor growth. Math. Models Methods Appl. Sci. 12(05), 737754.CrossRefGoogle Scholar
Arnold, A., Desvillettes, L. & Prévost, C. (2012) Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Commun. Pure Appl. Anal. 11(1), 83.CrossRefGoogle Scholar
Barles, G., Evans, L. C. & Souganidis, P. E. (1989) Wavefront propagation for reaction-diffusion systems of PDE. Duke Math. J. 61(3), 835858.Google Scholar
Barles, G., Mirrahimi, S. & Perthame, B. (2009) Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. Methods Appl. Anal. 16(3), 321340.CrossRefGoogle Scholar
Bénichou, O., Calvez, V., Meunier, N. & Voituriez, R. (2012) Front acceleration by dynamic selection in Fisher population waves. Phys. Rev. E 86(4), 041908.CrossRefGoogle ScholarPubMed
Berestycki, H., Nadin, G., Perthame, B. & Ryzhik, L. (2009) The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22(12), 2813.CrossRefGoogle Scholar
Berestycki, N., Mouhot, C. & Raoul, G. (2015) Existence of self-accelerating fronts for a non-local reaction-diffusion equations. arXiv preprint arXiv:1512.00903.Google Scholar
Bouin, E. & Calvez, V. (2014) Travelling waves for the cane toads equation with bounded traits. Nonlinearity 27(9), 2233.CrossRefGoogle Scholar
Bouin, E., Calvez, V., Meunier, N., Mirrahimi, S., Perthame, B., Raoul, G. & Voituriez, R. (2012) Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration. Comptes Rendus Mathematique 350(15–16), 761766.CrossRefGoogle Scholar
Bouin, E., Henderson, C. & Ryzhik, L. (2017) The Bramson logarithmic delay in the cane toads equations. Q. Appl. Math. 75(4), 599634.CrossRefGoogle Scholar
Bouin, E., Henderson, C. & Ryzhik, L. (2017) Super-linear spreading in local and non-local cane toads equations. J. de Mathématiques Pures et Appliquées 108(5), 724–750.CrossRefGoogle Scholar
Byrne, H. M. & Drasdo, D. (2009) Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58(4–5), 657.CrossRefGoogle Scholar
Dhruv, H. D., McDonough Winslow, W. S., Armstrong, B., Tuncali, S., Eschbacher, J., Kislin, K., Loftus, J. C., Tran, N. L. & Berens, M. E. (2013) Reciprocal activation of transcription factors underlies the dichotomy between proliferation and invasion of glioma cells. PLoS One 8(8), e72134.CrossRefGoogle ScholarPubMed
Dieckmann, U. & Law, R. (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34(5–6), 579612.CrossRefGoogle ScholarPubMed
Diekmann, O., Jabin, P.-E., Mischler, S. & Perthame, B. (2005) The dynamics of adaptation: an illuminating example and a hamilton–jacobi approach. Theor. Population Biol. 67(4), 257271.CrossRefGoogle Scholar
Doerfler, W. & Böhm, P. (2006) DNA Methylation: Development, Genetic Disease and Cancer, Vol. 310, Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Evans, L. C. & Souganidis, P. E. (1989) A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J. 38(1), 141172.CrossRefGoogle Scholar
Fisher, R. A. (1937) The wave of advance of advantageous genes. Ann. Eugenics 7(4), 355369.CrossRefGoogle Scholar
Fleming, W. H. & Souganidis, P. E. (1986) PDE-viscosity solution approach to some problems of large deviations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 13(2), 171192.Google Scholar
Gallaher, J. A., Brown, J. S. & Anderson, A. R. A. (2019) The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer. Sci. Rep. 9(1), 110.CrossRefGoogle ScholarPubMed
Gerlee, P. & Anderson, A. R. A. (2009) Evolution of cell motility in an individual-based model of tumour growth. J. Theor. Biol. 259(1), 6783.CrossRefGoogle Scholar
Gerlee, P. & Nelander, S. (2012) The impact of phenotypic switching on glioblastoma growth and invasion. PLoS Comput. Biol. 8(6), e1002556.CrossRefGoogle ScholarPubMed
Giese, A., Bjerkvig, R., Berens, M. E. & Westphal, M. (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol. 21(8), 16241636.CrossRefGoogle ScholarPubMed
Giese, A., Loo, M. A., Tran, N., Haskett, D., Coons, S. W. & Berens, M. E. (1996) Dichotomy of astrocytoma migration and proliferation. Int. J. Cancer 67(2), 275282.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Hamel, F. & Ryzhik, L. (2014) On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds. Nonlinearity 27(11), 2735.CrossRefGoogle Scholar
Hatzikirou, H., Basanta, D., Simon, M., Schaller, K. & Deutsch, A. (2012) ‘go or grow’: the key to the emergence of invasion in tumour progression? Math. Med. Biol. J. IMA 29(1), 4965.Google Scholar
Huang, S. (2013) Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev. 32, 423448.CrossRefGoogle ScholarPubMed
Kim, I. & Tong, J. (2020) Interface dynamics in a two-phase tumor growth model. arXiv preprint arXiv:2002.03487.Google Scholar
Kolmogorov, A. N. (1937) étude de l’équation de la diffusion avec croissance de la quantité de matière et son application À un problème biologique. Bull. Univ. Moskow Ser. Internat. Sec. A 1, 125.Google Scholar
Lorenzi, T., Lorz, A. & Perthame, B. (2016) On interfaces between cell populations with different mobilities. Kinet. Relat. Models 10(1), 299.CrossRefGoogle Scholar
Lorz, A., Mirrahimi, S. & Perthame, B. (2011) Dirac mass dynamics in multidimensional nonlocal parabolic equations. Commun. Partial Differ. Equations 36(6), 10711098.CrossRefGoogle Scholar
Orlando, P. A., Gatenby, R. A. & Brown, J. S. (2013) Tumor evolution in space: the effects of competition colonization tradeoffs on tumor invasion dynamics. Front. Oncol. 3, 45.CrossRefGoogle ScholarPubMed
Pérez-Garca, V. M., Calvo, G. F., Belmonte-Beitia, J., Diego, D. & Pérez-Romasanta, L. (2011) Bright solitary waves in malignant gliomas. Phys. Rev. E 84(2), 021921.CrossRefGoogle Scholar
Perthame, B. (2006) Transport Equations in Biology, Springer, Berlin, Heidelberg.Google Scholar
Perthame, B. & Barles, G. (2008) Dirac concentrations in lotka-volterra parabolic PDEs. Indiana Univ. Math. J. 57(7), 32753301.CrossRefGoogle Scholar
Perthame, B., Quirós, F. & Vázquez, J. L. (2014) The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Rational Mech. Anal. 212(1), 93127.CrossRefGoogle Scholar
Pham, K., Chauviere, A., Hatzikirou, H., Li, X., Byrne, H. M., Cristini, V. & Lowengrub, J. (2012) Density-dependent quiescence in glioma invasion: instability in a simple reaction–diffusion model for the migration/proliferation dichotomy. J. Biol. Dyn. 6(sup1), 54–71.CrossRefGoogle Scholar
Pham, K., Turian, E., Liu, K., Li, S. & Lowengrub, J. (2018) Nonlinear studies of tumor morphological stability using a two-fluid flow model. J. Math. Biol. 77(3), 671709.CrossRefGoogle ScholarPubMed
Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. (2006) Invasion and the evolution of speed in toads. Nature 439(7078), 803803.CrossRefGoogle ScholarPubMed
Shine, R. (2014) A review of ecological interactions between native frogs and invasive cane toads in Australia. Austral Ecol. 39(1), 116.CrossRefGoogle Scholar
Shine, R., Brown, G. P. & Phillips, B. L. (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl. Acad. Sci. 108(14), 57085711.CrossRefGoogle Scholar
Smith, J. T., Tomfohr, J. K., Wells, M. C., Beebe, T. P., Kepler, T. B. & Reichert, W. M. (2004) Measurement of cell migration on surface-bound fibronectin gradients. Langmuir 20(19), 82798286.CrossRefGoogle ScholarPubMed
Tang, M., Vauchelet, N., Cheddadi, I., Vignon-Clementel, I., Drasdo, D. & Perthame, B. (2014) Composite waves for a cell population system modeling tumor growth and invasion. In: Partial Differential Equations: Theory, Control and Approximation, Springer, pp. 401–429.CrossRefGoogle Scholar
Turanova, O. (2015) On a model of a population with variable motility. Math. Models Methods Appl. Sci. 25(10), 19612014.CrossRefGoogle Scholar
Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. (2008) A toad more traveled: the heterogeneous invasion dynamics of cane toads in australia. Am. Nat. 171(3), E134E148.CrossRefGoogle ScholarPubMed
Wang, S. D., Rath, P., Lal, B., Richard, J. P., Li, Y., Goodwin, C. R., Laterra, J. & Xia, S. (2012) Ephb2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 31(50), 51325143.CrossRefGoogle ScholarPubMed
Wang, S. E., Hinow, P., Bryce, N., Weaver, A. M., Estrada, L., Arteaga, C. L. & Webb, G. F. (2009) A mathematical model quantifies proliferation and motility effects of tgf- $\beta$ on cancer cells. Comput. Math. Methods Med. 10(1), 7183.CrossRefGoogle ScholarPubMed
Xie, Q., Mittal, S. & Berens, M. E. (2014) Targeting adaptive glioblastoma: an overview of proliferation and invasion. Neuro-oncology 16(12), 15751584.CrossRefGoogle ScholarPubMed