Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T21:36:12.478Z Has data issue: false hasContentIssue false

Homogenization of composite electrets

Published online by Cambridge University Press:  13 June 2015

YOUCEF AMIRAT
Affiliation:
Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal, 63177 Aubière Cedex, France email: [email protected]
VLADIMIR V. SHELUKHIN
Affiliation:
Lavrentyev Institute of Hydrodynamics, Lavrentyev pr. 15, Novosibirsk 630090 and Novosibirsk State University, Russia email: [email protected]

Abstract

We study the two-scale homogenization of the diffraction interfacial condition for the diffusion equation relevant to a composite medium which has a periodic structure. The results are applied to the electric field potential within a dielectric composite body when there is a difference in dielectric permittivity between the composite components in the presence of interfacial static charges. The principal result is that the interfacial charge distribution is equivalent to an apparent bulk charge which can be calculated starting from the composite geometry. We perform the corrector analysis and establish that the corrector terms strongly depend on the interfacial charge.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Amirat, Y. & Shelukhin, V. V. (2011) Homogenization of time harmonic Maxwell equations and the frequency dispersion effect. J. Math. Pures Appl. 95, 420443.CrossRefGoogle Scholar
[2] Amirat, Y. & Shelukhin, V. V. (2008) Homogenization of electroosmotic flow equations in porous media. J. Math. Anal. Appl. 342 (2), 12271245.CrossRefGoogle Scholar
[3] Auriault, J. L. & Ene, H. (1994) Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. J. Heat Mass Transfer 37, 28852892.Google Scholar
[4] Bensoussan, A., Lions, J. L. & Papanicolaou, G. (1978) Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam.Google Scholar
[5] Cioranescu, D., Donato, P. & Zaki, R. (2007) Asymptotic behaviour of elliptic problems in perforated domains with nonlinear boundary conditions. Asymptotic Anal. 53, 209235.Google Scholar
[6] Cioranescu, D. & Saint Jean-Paulin, J. (1979) Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (2), 590607.Google Scholar
[7] Conca, C. & Donato, P. (1988) Non-homogeneous Neumann problems in domains with small holes. RAIRO - Modélisation Math. Anal. Numérique 22 (4), 561607.CrossRefGoogle Scholar
[8] Sessler, G. M. & Gerhard-Multhaupt, R. (1998) Electrets, 3rd ed., Laplacian, Morgan Hill.Google Scholar
[9] Gómez, D., Lobo, M., Pérez, M. E., Shaposhnikova, T. A. & Zubova, M. N. (2013) Homogenization problem in domain perforated by thin tubes with nonlinear Robin type boundary condition. Dokl. Math. 87 (1), 511.Google Scholar
[10] Kurbanov, M. A., Sultanakhmedova, I. S., Kerimov, E. A., Aliev, Kh. S., Aliev, G. G. & Geidarov, G. M. (2009) Plasma crystallization of polymer-ferroelectric/piezoelectric ceramic composites and their piezoelectric properties. Phys. Solid State 51 (6), 12231230.CrossRefGoogle Scholar
[11] Lions, J. L. (1981) Some Methods in the Mathematical Analysis of Systems and their Control, Science Press, Beijing.Google Scholar
[12] Lipton, R. (1998) Heat Conduction in fine scale mixtures with interfacial contact resistance. SIAM J. Appl. Math. 58 (1), 5572.CrossRefGoogle Scholar
[13] Meirmanov, A. (2014) Mathematical Models for Poroelastic Flows, Atlantifs Press.Google Scholar
[14] Mellinger, A., Gonzalez, F. C. & Gerhard-Multhaupt, R. (2003) Ultraviolet-induced discharge currents and reduction of the piezoelectric coefficient in cellular polypropylene films. Appl. Phys. Lett. 82 (2), 254256.Google Scholar
[15] Moskow, S. & Vogelius, M. (1997) First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof. Proc. Roy. Soc. Edinburgh. A 127 (6), 12631299.CrossRefGoogle Scholar
[16] Monsurrò, S. (2003) Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 13 (1), 4363.Google Scholar
[17] Nguetseng, G. (1989) A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (3), 608623.Google Scholar
[18] Oleinik, O. A., Shamaev, A. S. & Yosifian, G. A. (1991) Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and its Applications, Vol. 26, Amsterdam - London - New York - Tokyo: North-Holland.Google Scholar
[19] Pastukhova, S. E. (2001) Homogenization of a mixed problem with Signorini condition for an elliptic operator in a perforated domain. Mat. Sb. 192 (2), 87102.Google Scholar
[20] Roberts, J. N. & Schwartz, L. M. (1985) Grain consolidation and electrical conductivity in porous media. Phys. Rev. B 31 (9), 59905997.CrossRefGoogle ScholarPubMed
[21] Sanchez-Palencia, E. (1980) Non-Homogeneous Media and Vibration Theory, Lecture notes in Phys., Springer, New York.Google Scholar
[22] Shelukhin, V. V. & Terentev, S. A. (2009) Frequency dispersion of dielectric permittivity and electric conductivity of rocks via two-scale homogenization of the Maxwell equations. Prog. Electromagn. Res. B 14, 175202.CrossRefGoogle Scholar
[23] Shelukhin, V. V., Yeltsov, I. & Paranichev, I. (2011) The electrokinetic cross-coupling coefficient: Two-scale homogenization approach. World J. Mech. 1 (3), 127136.Google Scholar
[24] Whitesides, G. M. & McCarty, L. S. (2008) Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 21882207.Google Scholar