Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T07:48:40.633Z Has data issue: false hasContentIssue false

Hele-Shaw flow driven by an electric field

Published online by Cambridge University Press:  10 October 2013

A. H. KHALID
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK e-mails: [email protected], [email protected], [email protected]
N. R. McDONALD
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK e-mails: [email protected], [email protected], [email protected]
J.-M. VANDEN-BROECK
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK e-mails: [email protected], [email protected], [email protected]

Abstract

The behaviour of two-dimensional finite blobs of conducting viscous fluid in a Hele-Shaw cell subject to an electric field is considered. The time-dependent free boundary problem is studied both analytically using the Schwarz function of the free boundary and numerically using a boundary integral method. Various problems are considered, including (i) the behaviour of an initially circular blob of conducting fluid subject to an electric point charge located arbitrarily within the blob, (ii) the delay in cusp formation on the free boundary in sink-driven flow due to a strategically placed electric charge and (iii) the stability of exact steady solutions having both hydrodynamic and electric forcing.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ceniceros, H. D., Hou, T. Y. & Si, H. (1999) Numerical study of Hele-Shaw flow with suction. Phys. Fluids. 11 (9), 24712486.CrossRefGoogle Scholar
[2]Cordero, M. L., Burnham, D. R., Baroud, C. N. & McGloin, D. (2008) Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball. Appl. Phys. Lett. 93, 13.CrossRefGoogle Scholar
[3]Cummings, L. J., Howison, S. D. & King, J. R. (1999) Two-dimensional Stokes and Hele-Shaw flows with free surfaces. Eur. J. Appl. Math. 10, 635680.CrossRefGoogle Scholar
[4]Entov, V. M. & Etingof, P. (2007) On generalized two-fluid Hele-Shaw flow. Eur. J. Appl. Math. 18, 103128.CrossRefGoogle Scholar
[5]Entov, V. M., Etingof, P. & Kleinbock, D. Ya. (1993) Hele-Shaw flows with a free boundary produced by multipoles. Eur. J. Appl. Math. 4, 97120.CrossRefGoogle Scholar
[6]Gustafsson, B. & Vasilev, A. (2006) Conformal and Potential Analysis in Hele-Shaw Cells. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Switzerland.Google Scholar
[7]Hele-Shaw, H. S. (1898) Flow of water. Nature 59 (1523), 222223.CrossRefGoogle Scholar
[8]Howison, S. D. (1986) Cusp development in Hele-Shaw flow with a free surface. SIAM J. Appl. Math. 46 (1), 2026.CrossRefGoogle Scholar
[9]Howison, S. D., Ockendon, J. R. & Lacey, A. A. (1985) Singularity development in moving-boundary problems. Q. J. Mech. Appl. Math 38 (3), 333360.CrossRefGoogle Scholar
[10]Kochina, P. Ya. & Kochina, N. N. (1996) On an oil-field contour. J. Appl. Math. Mech. 60 (6), 953957.CrossRefGoogle Scholar
[11]Li, D. (2004) Electrokinetics in Microfluidics, Vol. 2 (Interface Science and Technology). Elsevier, Amsterdam, Netherlands.Google Scholar
[12]Longuet-Higgins, M. S. & Cokelet, E. D. (1976) The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. A. 350, 126.Google Scholar
[13]Malloggi, F., Vanapalli, S. A., Gu, H., van den Ende, D. & Mugele, F. (2007) Electrowetting-controlled droplet generation in microfluidic flow-focusing device. J. Phys. Condens. Matter 19 (462101), 17.CrossRefGoogle Scholar
[14]McDonald, N. R. (2011) Generalised Hele-Shaw flow: A Schwarz function approach. Eur. J. Appl. Math. 22, 116.CrossRefGoogle Scholar
[15]Mugele, F. & Baret, J.-C. (2005) Electrowetting: From basics to applications. J. Phys. Condens. Matter 17, 705774.CrossRefGoogle Scholar
[16]Ockendon, J. R. & Howison, S. D. (2002) Kochina and Hele-Shaw in modern mathematics, natural science and industry. J. Appl. Math. Mech. 66 (3), 505512.CrossRefGoogle Scholar
[17]Prakash, M. & Gershenfeld, N. (2007) Microfluidic bubble logic. Science 315, 832835.CrossRefGoogle ScholarPubMed
[18]Richardson, S. (1972) Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. J. Fluid. Mech. 56 (4), 609618.CrossRefGoogle Scholar
[19]Richardson, S. (1994) Hele-Shaw flows with time-dependent free boundaries in which the fluid occupies a multiply-connected region. Eur. J. Appl. Math. 56 (4), 609618.Google Scholar
[21]Vanden-Broeck, J. -M. (1994) Steep solitary waves in water of finite depth with constant vorticity. J. Fluid. Mech. 274, 339348.CrossRefGoogle Scholar
[22]Wong, P. K., WANG, T. H., Deval, J. H. & Ho, C. M. (2004) Electrokinetics in micro devices for biotechnology applications. IEEE/ASME Trans. Mechanotron. 9 (2), 366376.CrossRefGoogle Scholar