Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:16:21.487Z Has data issue: false hasContentIssue false

Generalized solutions of an equation with fractional derivatives

Published online by Cambridge University Press:  01 April 2009

B. STANKOVIC
Affiliation:
Department of Mathematics, Trg D. Obradovića 4, University of Novi Sad, 21000 Novi Sad, Serbia
T. M. ATANACKOVIC
Affiliation:
Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 5, 21000 Novi Sad, Serbia email: [email protected]

Abstract

We consider an equation with left and right fractional derivatives which appears as a mathematical model in the mechanics. The type of equations that we analyse appear, as a rule, in variational problems containing fractional derivatives. We look for solutions in a suitably defined sub-space of distributions which is sufficient to enclose different ‘singular’ solutions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Agrawal, O. P. (2002) Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368379.CrossRefGoogle Scholar
[2]Agrawal, O. P. (2006) Fractional variational calculus and the transversality conditions. J. Phys. A: Math. Gen. 39, 1037510384.CrossRefGoogle Scholar
[3]Agrawal, O. P. (2007) Fractional calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Gen. 40, 62876303.CrossRefGoogle Scholar
[4]Atanacković, T. M. & Stanković, B. (2007) On a class of differential equations with left and right fractional derivatives. Z. Angew. Math. Mech. 87, 537546.CrossRefGoogle Scholar
[5]Drozhinov, Y. N. & Zavyalov, B. I. (1977) Quasiasymptotics of generalized functions and Tauberian theorems in the complex domain. Math. Sb., 102, 372390 (In Russian). English transl. Math. USSR Sb., 36 (1977).Google Scholar
[6]Drozhinov, Y. N. & Zavyalov, B. I. (1985) Asymptotic properties of some classes of generalized functions. Izv. Akad. Nauk. SSSR, Ser. Mat. 49, 81140. (In Russian).Google Scholar
[7]Erdélyi, A. editor (1955) Higher Transcendental Functions. McGraw-Hill, New York, Vol. 3.Google Scholar
[8]Gaies, A. & El-Akrimi, A. (2004) Fractional variational principles in macroscopic picture. Phys. Scr. 70, 710.CrossRefGoogle Scholar
[9]Gorenflo, R. & Mainardi, F. (1997) Fractional calculus, integral and differential equations of fractional order. In: Carpinteri, A. & Mainardi, F. (editors), Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York, pp. 223276.CrossRefGoogle Scholar
[10]Gorenflo, R. & Mainardi, F. (2000) On the Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, 283299.Google Scholar
[11]Hilfer, R. (2000) Fractional calculus and regular variation in thermodinamics. In: Hilfer, R. (editor), Applications of Fractional Calculus in Physics, World Scientific, Singapore, pp. 429463.CrossRefGoogle Scholar
[12]Kilbas, A. A., Srivastava, H. M. & Trujillo, J. I. (2006) Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam.Google Scholar
[13]Lazopulos, K. A. (2006) Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 33, 753757.CrossRefGoogle Scholar
[14]Lojasiewics, S. (1957) Sur la valeur et la limit d'une distribution dans un point. Studia Math. 16, 136.CrossRefGoogle Scholar
[15]Muslich, S. I. & Baleanu, D. (2005) Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599606.CrossRefGoogle Scholar
[16]Pilipović, S., Stanković, B. & Takači, A. (1990) Asymptotic Behavior and Stieltjes Transformations of Distributions. Teubner Verlagsgesellschaft, Leipzig.Google Scholar
[17]Podlubny, I. (1999) Fractional defferential equations. Academic Press, San Diego.Google Scholar
[18]Rekhviashvili, S. (2004) The Lagrange formalism with fractional derivatives in problems of mechanics. Technical Phys. Lett. 30, 3337.CrossRefGoogle Scholar
[19]Riewe, F. (1996) Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53 18901899.CrossRefGoogle ScholarPubMed
[20]Riewe, F. (1997) Mechanics with fractional derivatives. Phys. Rev. E 55, 35823592.CrossRefGoogle Scholar
[21]Samko, S. G., Kilbas, A. A. & Marichev, O. I. (1993) Fractional Integrals and Derivatives, Gordon and Breach, Amsterdam.Google Scholar
[22]Schwartz, L. (1957) Théorie des distributions. Vol. 1, Hermann, Paris.Google Scholar
[23]Stanković, B. (2006) Equations with left and right fractional derivatives. Publ. Inst. Math. (Beograd) 80 (94), 257272.CrossRefGoogle Scholar
[24]Szmydt, Z. (1977) Fourier Transformation and Linear Differential Equations, Reidel Publishing Company, Dordrecht.Google Scholar
[25]Vladimirov, V. S. (1979) Generalized Functions in Mathematical Physics, Mir Publishers, Moscow.Google Scholar
[26]Vladimirov, V. S. (1981) Equations in Mathematical Physics, Nauka, Moscow (In Russian).Google Scholar
[27]Vladimirov, V. S., Drozlinov, Y. N. & Zavialov, B. I. (1988) Tauberian Theorems for Generalized Functions, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar