Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T19:47:33.608Z Has data issue: false hasContentIssue false

Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations

Published online by Cambridge University Press:  24 May 2013

DENYS DUTYKH
Affiliation:
School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland, and LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France email: [email protected]
DIDIER CLAMOND
Affiliation:
Laboratoire J.-A. Dieudonné, Université de Nice, Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France email: [email protected]
PAUL MILEWSKI
Affiliation:
Deptartment of Mathematical Sciences, University of Bath, Bath BA2 7JX, UK email: [email protected]
DIMITRIOS MITSOTAKIS
Affiliation:
University of California, Merced, 5200 North Lake Road, Merced, CA 94353, USA email: [email protected]

Abstract

After we derive the Serre system of equations of water wave theory from a generalized variational principle, we present some of its structural properties. We also propose a robust and accurate finite volume scheme to solve these equations in one horizontal dimension. The numerical discretization is validated by comparisons with analytical and experimental data or other numerical solutions obtained by a highly accurate pseudo-spectral method.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abramowitz, M. & Stegun, I. A. (1972) Handbook of Mathematical Functions, Dover Publications, Mineola, NY.Google Scholar
[2]Antnonopoulos, D. C., Dougalis, V. A. & Mitsotakis, D. E. (2009) Initial-boundary-value problems for the Bona-Smith family of Boussinesq systems. Adv. Differ. Equ. 14, 2753.Google Scholar
[3]Antonopoulos, D. C., Dougalis, V. A., & Mitsotakis, D. E. (2010) Numerical solution of Boussinesq systems of the Bona-Smith family. Appl. Numer. Math. 30, 314336.Google Scholar
[4]Avilez-Valente, P. & Seabra-Santos, F. J. (2009) A high-order Petrov-Galerkin finite element method for the classical Boussinesq wave model. Int. J. Numer. Meth. Fluids 59, 9691010.Google Scholar
[5]Barth, T. J. (1994) Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier–Stokes Equations. Computational Fluid Dynamics, No. 1994–04 in Lecture Series – van Karman Institute for Fluid Dynamics, Vol. 5, pp. 1140.Google Scholar
[6]Barth, T. J. & Ohlberger, M. (2004) Finite Volume Methods: Foundation and Analysis, John Wiley, New York.Google Scholar
[7]Barthélémy, E. (2004) Nonlinear shallow water theories for coastal waves. Surv. Geophys. 25, 315337.Google Scholar
[8]Benjamin, T. B. & Olver, P. (1982) Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137185.Google Scholar
[9]Bogacki, P. & Shampine, L. F. (1989) A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2 (4), 321325.Google Scholar
[10]Bona, J. L. & Chen, M. (1998) A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D 116, 191224.Google Scholar
[11]Broer, L. J. F. (1974) On the Hamiltonian theory of surface waves. Appl. Sci. Res. 29 (6), 430446.Google Scholar
[12]Carter, J. D. & Cienfuegos, R. (2011) The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations. Eur. J. Mech. B/Fluids 30, 259268.Google Scholar
[13]Causon, D. M., Ingram, D. M., Mingham, C. G., Yang, G. & Pearson, R. V. (2000) Calculation of shallow water flows using a Cartesian cut cell approach. Adv. Water Resour. 23, 545562.CrossRefGoogle Scholar
[14]Chambarel, J., Kharif, C. & Touboul, J. (2009) Head-on collision of two solitary waves and residual falling jet formation. Nonlin. Process. Geophys. 16, 111122.Google Scholar
[15]Chazel, F., Lannes, D. & Marche, F. (2011) Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model. J. Sci. Comput. 48, 105116.Google Scholar
[16]Cienfuegos, R., Barthelemy, E. & Bonneton, P. (2006) A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis. Int. J. Numer. Meth. Fluids 51, 12171253.Google Scholar
[17]Cienfuegos, R., Barthelemy, E. & Bonneton, P. (2007) A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II: Boundary conditions and model validation. Int. J. Numer. Meth. Fluids 53, 14231455.Google Scholar
[18]Clamond, D. & Dutykh, D. (Submitted) Fast accurate computation of the fully nonlinear solitary surface gravity waves. Comput. Fluids.Google Scholar
[20]Clamond, D. & Dutykh, D. (2012) Practical use of variational principles for modeling water waves. Physica D: Nonlinear Phenom. 241 (1), 2536.CrossRefGoogle Scholar
[21]Clamond, D. & Grue, J. (2001) A fast method for fully nonlinear water-wave computations. J. Fluid. Mech. 447, 337355.Google Scholar
[22]Clauss, G. F. & Klein, M. F. (2011) The new year wave in a sea keeping basin: Generation, propagation, kinematics and dynamics. Ocean Eng. 38, 16241639.Google Scholar
[23]Craig, W., Guyenne, P., Hammack, J., Henderson, D. & Sulem, C. (2006) Solitary water wave interactions. Phys. Fluids 18 (5), 57106.Google Scholar
[24]Craik, A. D. D. (2004) The origins of water wave theory. Ann. Rev. Fluid Mech. 36, 128.Google Scholar
[25]Dias, F. & Milewski, P. (2010) On the fully nonlinear shallow-water generalized Serre equations. Phys. Lett. A 374 (8), 10491053.Google Scholar
[26]Dougalis, V. A. & Mitsotakis, D. E. (2004) Solitary Waves of the Bona–Smith System, World Scientific, New Jersey, pp. 286294.Google Scholar
[27]Dougalis, V. A. & Mitsotakis, D. E. (2008) Theory and numerical analysis of Boussinesq systems: A review. In: Kampanis, N. A., Dougalis, V. A. and Ekaterinaris, J. A. (editors), Effective Computational Methods in Wave Propagation, CRC Press, Boca Raton, FL, pp. 63110.Google Scholar
[28]Dougalis, V. A., Mitsotakis, D. E. & Saut, J.-C.. (2007) On some Boussinesq systems in two space dimensions: Theory and numerical analysis. Math. Model. Num. Anal. 41 (5), 254825.Google Scholar
[29]Drazin, P. G. & Johnson, R. S. (1989) Solitons: An Introduction, Cambridge University Press, Cambridge, UK.Google Scholar
[30]Dutykh, D. & Clamond, D. (2011) Shallow water equations for large Bathymetry variations. J. Phys. A: Math. Theor. 44 (33), 332001.Google Scholar
[31]Dutykh, D. & Clamond, D. (Submitted) Modified ‘irrotational’ shallow water equations for significantly varying bottoms. 30.Google Scholar
[32]Dutykh, D., Katsaounis, T. & Mitsotakis, D. (Apr. 2011) Finite volume schemes for dispersive wave propagation and run-up. J. Comput. Phys. 230 (8), 30353061.Google Scholar
[33]Dutykh, D., Katsaounis, T. & Mitsotakis, D. (2013) Finite volume methods for unidirectional dispersive wave models. Int. J. Num. Meth. Fluids 71, 717736.Google Scholar
[34]El, G. A., Grimshaw, R. H. J. & Smyth, N. F. (2006) Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18, 27104.Google Scholar
[35]Fructus, D., Clamond, D., Kristiansen, O. & Grue, J. (2005) An efficient model for three-dimensional surface wave simulations. Part I: Free space problems. J. Comput. Phys. 205, 665685.Google Scholar
[36]Ghidaglia, J.-M., Kumbaro, A. & Le Coq, G. (1996) Une méthode volumes-finis à flux caractéristiques pour la résolution numérique des systémes hyperboliques de lois de conservation. C. R. Acad. Sci. I 322, 981988.Google Scholar
[37]Ghidaglia, J.-M., Kumbaro, A. & Le Coq, G. (2001) On the numerical solution to two-fluid models via cell centered finite volume method. Eur. J. Mech. B/Fluids 20, 841867.Google Scholar
[38]Green, A. E., Laws, N. & Naghdi, P. M. (1974) On the theory of water waves. Proc. R. Soc. Lond. A 338, 4355.Google Scholar
[39]Harten, A. (1989) ENO schemes with subcell resolution. J. Comput. Phys. 83, 148184.Google Scholar
[40]Harten, A. & Osher, S. (1987) Uniformly high-order accurate non-oscillatory schemes. I. SIAM J. Numer. Anal. 24, 279309.Google Scholar
[41]Isaacson, E. & Keller, H. B. (1966) Analysis of Numerical Methods, Dover, Mineola, NY.Google Scholar
[42]Kim, J. W., Bai, K. J., Ertekin, R. C. & Webster, W. C. (2001) A derivation of the Green–Naghdi equations for irrotational flows. J. Eng. Math. 40 (1), 1742.Google Scholar
[43]Kolgan, N. E. (1975) Finite-difference schemes for computation of three-dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack. Uchenye Zapiski TsaGI (Sci. Notes Central Inst. Aerodyn.) 6 (2), 16 (in Russian).Google Scholar
[44]Lamb, H. (1932) Hydrodynamics, Cambridge University Press, Cambridge, UK.Google Scholar
[45]Li, Y. A. (2002) Hamiltonian structure and linear stability of solitary waves of the Green-Naghdi equations. J. Nonlin. Math. Phys. 9 (1), 99105.Google Scholar
[46]Li, Y. A., Hyman, J. M. & Choi, W. (2004) A numerical study of the exact evolution equations for surface waves in water of finite depth. Stud. Appl. Maths. 113, 303324.Google Scholar
[47]Luke, J. C. (1967) A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 375397.Google Scholar
[48]Maxworthy, T. (1976) Experiments on collisions between solitary waves. J Fluid Mech. 76, 177185.Google Scholar
[49]Mei, C. C. (1994) The Applied Dynamics of Ocean Surface Waves. World Scientific, Singapore.Google Scholar
[50]Miles, J. W. & Salmon, R. (1985) Weakly dispersive nonlinear gravity waves. J. Fluid Mech. 157, 519531.Google Scholar
[51]Milewski, P. & Tabak, E. (1999) A pseudospectral procedure for the solution of nonlinear wave equations with examples from free-surface flows. SIAM J. Sci. Comput. 21 (3), 11021114.Google Scholar
[52]Mingham, C. G. & Causon, D. M. (June 1998) High-resolution finite-volume method for shallow water flows. J. Hydraul. Eng. 124 (6), 605614.Google Scholar
[53]Mirie, S. M. & Su, C. H. (1982) Collision between two solitary waves. Part 2. A numerical study. J. Fluid Mech. 115, 475492.Google Scholar
[54]Mitsotakis, D. E. (2009) Boussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves. Math. Comp. Simul. 80, 860873.Google Scholar
[55]Petrov, A. A. (1964) Variational statement of the problem of liquid motion in a container of finite dimensions. Prikl. Math. Mekh. 28 (4), 917922.Google Scholar
[56]Renouard, D. P., Seabra-Santos, F. J. & Temperville, A. M. (1985) Experimental study of the generation, damping, and reflexion of a solitary wave. Dyn. Atmos. Oceans 9 (4), 341358.Google Scholar
[57]Seabra-Santos, F. J. (1985) Contribution à l'étude des ondes de gravité bidimensionnelles en eau peu profonde. PhD thesis, Institut National Polytechnique de Grenoble, Grenoble, France.Google Scholar
[58]Seabra-Santos, F. J., Renouard, D. P. & Temperville, A. M. (1987) Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176, 117134.Google Scholar
[59]Serre, F. (1953) Contribution à l'étude des écoulements permanents et variables dans les canaux. Houille Blanche 8, 374388.Google Scholar
[60]Shampine, L. F. & Reichelt, M. W. (1997) The MATLAB ODE Suite. SIAM J. Sci. Comput. 18, 122.Google Scholar
[61]Söderlind, G. (2003) Digital filters in adaptive time-stepping. ACM Trans. Math. Softw. 29, 126.Google Scholar
[62]Söderlind, G. & Wang, L. (2006) Adaptive time-stepping and computational stability. J. Comput. Appl. Math. 185 (2), 225243.Google Scholar
[63]Stoker, J. J. (1958) Water Waves, the Mathematical Theory With Applications, Wiley, New York.Google Scholar
[64]Su, C. H. & Gardner, C. S. (1969) Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation. J. Math. Phys. 10, 536539.Google Scholar
[65]Trefethen, L. N. (2000) Spectral Methods in MatLab, Society for Industrial and Applied Mathematics, Philadelphia, PA.Google Scholar
[66]van Leer, B. (1979) Towards the ultimate conservative difference scheme V: a second order sequel to Godunov' method. J. Comput. Phys. 32, 101136.Google Scholar
[67]van Leer, B. (2006) Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes. Commun. Comput. Phys. 1, 192206.Google Scholar
[68]Verner, J. H. (1978) Explicit Runge–Kutta methods with estimates of the local truncation error. SIAM J. Num. Anal. 15 (4), 772790.Google Scholar
[69]Vignoli, G., Titarev, V. A. & Toro, E. F. (Feb. 2008) ADER schemes for the shallow water equations in channel with irregular bottom elevation. J. Comp. Phys. 227 (4), 24632480.Google Scholar
[70]Whitham, G. B. (1965) A general approach to linear and non-linear dispersive waves using a Lagrangian. J. Fluid Mech. 22, 273283.Google Scholar
[71]Whitham, G. B. (1999) Linear and Nonlinear Waves, John Wiley, New York.Google Scholar
[72]Xing, Y. & Shu, C.-W.. (2005) High-order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206227.Google Scholar
[73]Zakharov, V. E. (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.Google Scholar
[74]Zheleznyak, M. I. (1985) Influence of long waves on vertical obstacles. In: Pelinovsky, E. N. (editor), Tsunami Climbing a Beach, Applied Physics Institute Press, Gorky, Russia, pp. 122139.Google Scholar
[75]Zheleznyak, M. I. & Pelinovsky, E. N. (1985) Physical and mathematical models of the tsunami climbing a beach. In: Pelinovsky, E. N. (editor), Tsunami Climbing a Beach, Applied Physics Institute Press, Gorky, Russia, pp. 834.Google Scholar