Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T07:13:47.680Z Has data issue: false hasContentIssue false

Extrapolation of perturbation-theory expansions by self-similar approximants

Published online by Cambridge University Press:  09 June 2014

S. GLUZMAN
Affiliation:
Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia emails: [email protected], [email protected]
V.I. YUKALOV
Affiliation:
Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia emails: [email protected], [email protected]

Abstract

The problem of extrapolating asymptotic perturbation-theory expansions in powers of a small variable to large values of the variable tending to infinity is investigated. The analysis is based on self-similar approximation theory. Several types of self-similar approximants are considered and their use in different problems of applied mathematics is illustrated. Self-similar approximants are shown to constitute a powerful tool for extrapolating asymptotic expansions of different natures.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnold, P. & Moore, G. (2001) BEC transition temperature of a dilute homogeneous imperfect Bose gas. Phys. Rev. Lett. 87, 120401.CrossRefGoogle ScholarPubMed
[2]Arnold, P. & Moore, G. (2001) Monte Carlo simulation of O(2) φ4 field theory in three dimensions. Phys. Rev. E 64, 066113.CrossRefGoogle Scholar
[3]Astrakharchik, G. E., Boronat, J., Casulleras, J. & Giorgini, S. (2004) Equation of state of a Fermi gas in the BEC-BCS crossover: A quantum Monte Carlo study. Phys. Rev. Lett. 93, 200404.CrossRefGoogle ScholarPubMed
[4]Baker, G. A. (1999) Neutron matter model. Phys. Rev. C 60, 054311.CrossRefGoogle Scholar
[5]Baker, G. A. & Graves-Moris, P. (1996) Padé Approximants, Cambridge University, Cambridge, UK.CrossRefGoogle Scholar
[6]Bender, C. M. & Boettcher, S. (1994) Determination of f(∞) from the asymptotic series for $f(x)$ about $x=0$. J. Math. Phys. 35, 19141921.CrossRefGoogle Scholar
[7]Bogolubov, N. N. (1949) Lectures on Quantum Statistics, Ryadyanska Shkola, Kiev, Ukraine.Google Scholar
[8]Bogolubov, N. N. (1963) On the Problem of Hydrodynamics of Superfluid, JINR, Dubna, Russia.Google Scholar
[9]Bogolubov, N. N. (1967) Lectures on Quantum Statistics, Vol. 1, Gordon and Breach, New York, NY.Google Scholar
[10]Bogolubov, N. N. (1970) Lectures on Quantum Statistics, Vol. 2, Gordon and Breach, New York, NY.Google Scholar
[11]Bogolubov, N. N. & Mitropolsky, Y. A. (1961) Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, NY.Google Scholar
[12]Carlson, J., Chang, S. Y., Pandharipande, V. K. & Schmidt, K. E. (2003) Superfluid Fermi gases with large scattering length. Phys. Rev. Lett. 91, 050401.CrossRefGoogle ScholarPubMed
[13]Cole, R. K. (1967) Quantum hard-sphere gas in the limit of high densities with application to solidified light gases. Phys. Rev. 155, 114121.CrossRefGoogle Scholar
[14]Doi, M. & Edwards, S. F. (2001) The Theory of Polymer Dynamics, Oxford University, Oxford, UK.Google Scholar
[15]Edwards, S. F. (1965) The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. Lond. 85, 613624.CrossRefGoogle Scholar
[16]Erdélyi, A. (1955) Asymptotic Expansions, Dover, New York, NY.CrossRefGoogle Scholar
[17]Giacaglia, G. E. O. (1972) Perturbation Methods in Nonlinear Systems, Springer, New York, NY.CrossRefGoogle Scholar
[18]Gluzman, S. & Yukalov, V. I. (1998) Unified approach to crossover phenomena. Phys. Rev. E 58, 41974209.CrossRefGoogle Scholar
[19]Gluzman, S. & Yukalov, V. I. (2006) Self-similar power transforms in extrapolation problems. J. Math. Chem. 39, 4756.CrossRefGoogle Scholar
[20]Gluzman, S. & Yukalov, V. I. (2010) Self-similar extrapolation from weak to strong coupling. J. Math. Chem. 48, 883913.CrossRefGoogle Scholar
[21]Gluzman, S., Yukalov, V. I. & Sornette, D. (2003) Self-similar factor approximants. Phys. Rev. E 67, 026109.CrossRefGoogle ScholarPubMed
[22]Gompper, G. & Kroll, D. M. (1989) Steric interactions in multimembrane systems: A Monte Carlo study. Eur. Phys. Lett. 9, 5964.CrossRefGoogle Scholar
[23]Hardy, G. H. (1949) Divergent Series, Oxford University Press, Oxford, UK.Google Scholar
[24]Hioe, F. T., McMillen, D. & Montroll, E. W. (1978) Quantum theory of unharmonic oscillators: Energy levels of a single and a pair of coupled oscillators with quartic coupling. Phys. Rep. 43, 305335.CrossRefGoogle Scholar
[25]Horn, D. & Weinstein, M. (1984) The $t$-expansion: A nonperturbative analytic tool for Hamiltonian systems. Phys. Rev. D 30, 12561270.CrossRefGoogle Scholar
[26]Hulthen, L. (1938) Über das austauschproblem eines kristalls. Ark. Mat. Astron. Fys. A 26, N11.Google Scholar
[27]Janke, W. & Kleinert, H. (1995) Convergent strong-coupling expansions from divergent weak-coupling perturbation theory. Phys. Rev. Lett. 75, 27872791.CrossRefGoogle ScholarPubMed
[28]Kalos, M. H., Levesque, D. & Verlet, L. (1974) Helium at zero temperature with hard spheres and other forces. Phys. Rev. A 9, 21782195.CrossRefGoogle Scholar
[29]Kartashov, Y. V., Malomed, B. A. & Torner, L. (2011) Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247305.CrossRefGoogle Scholar
[30]Kashurnikov, V. A., Prokofiev, N. & Svistunov, B. (2001) Critical temperature shift in weakly interacting Bose gas. Phys. Rev. Lett. 87, 120402.CrossRefGoogle ScholarPubMed
[31]Kastening, B. (2002) Fluctuation pressure of a membrane between walls through five loops. Phys. Rev. E 66, 061102.CrossRefGoogle ScholarPubMed
[32]Kastening, B. (2004) Bose–Einstein condensation temperature of a homogenous weakly interacting Bose gas in variational perturbation theory through seven loops. Phys. Rev. A 69, 043613.CrossRefGoogle Scholar
[33]Kastening, B. (2004) Non-universal critical quantities from variational perturbation theory and their application to the Bose–Einstein condensation temperature shift. Phys. Rev. A 70, 043621.CrossRefGoogle Scholar
[34]Kastening, B. (2004) Shift of BEC temperature of homogenous weakly interacting Bose gas. Laser Phys. 14, 586590.Google Scholar
[35]Kastening, B. (2006) Fluctuation pressure of a fluid membrane between walls through six loops. Phys. Rev. E 73, 011101.CrossRefGoogle ScholarPubMed
[36]Kedlaya, K. S. (2001) The algebraic closure of the power series field in positive characteristic. Proc. Amer. Math. Soc. 129, 34613470.CrossRefGoogle Scholar
[37]Keller, C., de Liano, M., Ren, S. Z., Solis, M. A. & Baker, G. A. (1996) Quantum hard-sphere system equations of state revisited. Ann. Phys. (NY) 251, 6475.CrossRefGoogle Scholar
[38]Ketterle, W. & Zwierlein, M. W. (2008) Making, probing and understanding ultracold Fermi gases. Riv. Nuovo Cimento 31, 247422.Google Scholar
[39]Kleinert, H. (1993) Systematic corrections to the variational calculation of the effective classical potential. Phys. Lett. A 173, 332342.CrossRefGoogle Scholar
[40]Kleinert, H. (1999) Fluctuation pressure of membrane between walls. Phys. Lett. A 257, 269274.CrossRefGoogle Scholar
[41]Kleinert, H. (2006) Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, World Scientific, Singapore.CrossRefGoogle Scholar
[42]Kleinert, H. & Yukalov, V. I. (2005) Self-similar variational perturbation theory for critical exponents. Phys. Rev. E 71, 026131.CrossRefGoogle ScholarPubMed
[43]Kochetov, E. A., Kuleshov, S. P. & Smondyrev, M. A. (1982) Functional variational approach to polaron models. Phys. Part. Nucl. 13, 264277.Google Scholar
[44]Lam, P. M. (1990) The structure function of branched polymers in a good solvent: A lattice calculation. J. Chem. Phys. 92, 31363143.CrossRefGoogle Scholar
[45]Landau, L. D. & Lifshitz, E. M. (2000) Statistical Physics, Butterworth-Heinemann, Oxford, UK.Google Scholar
[46]Lee, T. D., Huang, K. & Yang, C. N. (1957) Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 11351145.CrossRefGoogle Scholar
[47]Li, B., Madras, N. & Sokal, A. D. (1995) Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks. J. Stat. Phys. 80, 661754.CrossRefGoogle Scholar
[48]Lieb, E. H. & Liniger, W. (1963) Exact analysis of an interacting Bose gas: The general solution and the ground state. Phys. Rev. 130, 16051616.CrossRefGoogle Scholar
[49]MacLane, S. (1939) The universality of formal power series fields. Bull. Amer. Math. Soc. 45, 888890.CrossRefGoogle Scholar
[50]Miller, J. D. (1991) Exact pair correlation function of a randomly branched polymer. Eur. Phys. Lett. 16, 623628.CrossRefGoogle Scholar
[51]Miyake, S. J. (1975) Strong-coupling limit of the polaron ground state. J. Phys. Soc. Japan 38, 181182.CrossRefGoogle Scholar
[52]Miyake, S. J. (1976) The ground state of the optical polaron in the strong-coupling case. J. Phys. Soc. Japan 41, 747752.CrossRefGoogle Scholar
[53]Muthukumar, M. & Nickel, B. G. (1984) Perturbation theory for a polymer chain with excluded volume interaction. J. Chem. Phys. 80, 58395850.CrossRefGoogle Scholar
[54]Muthukumar, M. & Nickel, B. G. (1987) Expansion of a polymer chain with excluded volume interaction. J. Chem. Phys. 86, 460476.CrossRefGoogle Scholar
[55]Nayfeh, A. H. (1973) Perturbation Methods, Wiley, New York, NY.Google Scholar
[56]Nho, K. & Landau, D. P. (2004) Bose–Einstein condensation temperature of a homogeneous weakly interacting Bose gas: Path integral Monte-Carlo study. Phys. Rev. A 70, 053614.CrossRefGoogle Scholar
[57]Pethick, C. J. & Smith, H. (2008) Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
[58]Piryatinska, A., Saichev, A. I. & Woyszynski, W. A. (2005) Models of anomalous diffusion: The subdiffusive case. Physica A 349, 375420.CrossRefGoogle Scholar
[59]Prokofiev, N. & Svistunov, B. (2001) Worm algorithms for classical statistical models. Phys. Rev. Lett. 87, 160601.CrossRefGoogle Scholar
[60]Puiseux, V. A. (1850) Recherches sur les fonctions algébriques. J. Math. Pures Appl. 15, 365480.Google Scholar
[61]Saff, E. B. & Varga, R. S. (1976) On the sharpness of theorems concerning zero-free regions for certain sequences of polynomials. Numer. Math. 26, 245354.CrossRefGoogle Scholar
[62]Seifert, U. (1997) Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13137.CrossRefGoogle Scholar
[63]Selyugin, O. V. & Smondyrev, M. A. (1989) Phase transition and Padé approximants for Fröhlich polarons. Phys. Stat. Sol. B 155, 155167.CrossRefGoogle Scholar
[64]Simon, B. (1991) Fifty years of eigenvalue perturbation theory. Bull. Am. Math. Soc. 24, 303319.CrossRefGoogle Scholar
[65]Solis, M. A., de Liano, M. & Guardiola, R. (1994) London equation of state for a quantum hard-sphere system. Phys. Rev. B 49, 1320113203.CrossRefGoogle ScholarPubMed
[66]Yukalov, V. I. (1976) Theory of perturbations with a strong interaction. Moscow Univ. Phys. Bull. 51, 1015.Google Scholar
[67]Yukalov, V. I. (1976) Model of a hybrid crystal. Theor. Math. Phys. 28, 652660.CrossRefGoogle Scholar
[68]Yukalov, V. I. (1990) Statistical mechanics of strongly non-ideal systems. Phys. Rev. A 42, 33243334.CrossRefGoogle Scholar
[69]Yukalov, V. I. (1990) Self-similar approximations for strongly interacting systems. Physica A 167, 833860.CrossRefGoogle Scholar
[70]Yukalov, V. I. (1991) Method of self-similar approximations. J. Math. Phys. 32, 12351239.CrossRefGoogle Scholar
[71]Yukalov, V. I. (1992) Stability conditions for method of self-similar approximations. J. Math. Phys. 33, 39944001.CrossRefGoogle Scholar
[72]Yukalov, V. I. (2009) Cold bosons in optical lattices. Laser Phys. 19, 1110.CrossRefGoogle Scholar
[73]Yukalov, V. I. (2011) Basics of Bose–Einstein condensation. Phys. Part. Nucl. 42, 460513.CrossRefGoogle Scholar
[74]Yukalov, V. I. & Gluzman, S. (1998) Self-similar exponential approximants. Phys. Rev. E 58, 13591382.CrossRefGoogle Scholar
[75]Yukalov, V. I. & Gluzman, S. (2004) Extrapolation of power series by self-similar factor and root approximants. Int. J. Mod. Phys. B 18, 30273046.CrossRefGoogle Scholar
[76]Yukalov, V. I. & Gluzman, S. (2009) Optimisation of self-similar factor approximants. Mol. Phys. 107, 22372244.CrossRefGoogle Scholar
[77]Yukalov, V. I., Gluzman, S. & Sornette, D. (2003) Summation of power series by self-similar factor approximants. Physica A 328, 409438.CrossRefGoogle Scholar
[78]Yukalov, V. I. & Yukalova, E. P. (1993) Self-similar approximations for thermodynamic potentials. Physica A 198, 573592.CrossRefGoogle Scholar
[79]Yukalov, V. I. & Yukalova, E. P. (1994) Higher orders of self-similar approximations for thermodynamic potentials. Physica A 206, 553580.CrossRefGoogle Scholar
[80]Yukalov, V. I. & Yukalova, E. P. (1996) Temporal dynamics in perturbation theory. Physica A 225, 336362.CrossRefGoogle Scholar
[81]Yukalov, V. I. & Yukalova, E. P. (1999) Self-similar perturbation theory. Ann. Phys. (NY) 277, 219254.CrossRefGoogle Scholar
[82]Yukalov, V. I. & Yukalova, E. P. (2002) Self-similar structures and fractal transforms in approximation theory. Chaos Solit. Fract. 14, 839861.CrossRefGoogle Scholar
[83]Yukalov, V. I. & Yukalova, E. P. (2007) Method of self-similar factor approximants. Phys. Lett. A 368, 341347.CrossRefGoogle Scholar
[84]Yukalov, V. I., Yukalova, E. P. & Gluzman, S. (1998) Self-similar interpolation in quantum mechanics. Phys. Rev. A 58, 96115.CrossRefGoogle Scholar
[85]Zakharov, V. E. (1968) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar