Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T07:22:13.599Z Has data issue: false hasContentIssue false

Extensional flow of nematic liquid crystal with an applied electric field

Published online by Cambridge University Press:  17 October 2013

L. J. CUMMINGS
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA emails: [email protected], [email protected]
J. LOW
Affiliation:
Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain email: [email protected]
T. G. MYERS
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA emails: [email protected], [email protected]

Abstract

Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified ‘Trouton ratio’. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Buckmaster, J. D., Nachman, A. & Ting, L. (1975) The buckling and stretching of viscida. J. Fluid Mech. 69, 120.Google Scholar
[2]Chandrasekhar, S. (1992) Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge, UK.Google Scholar
[3]Cox, R. G. (1986) Dynamics of the spreading of liquids on a solid surface, Part 1. Viscous flow. J. Fluid Mech. 168, 169194.Google Scholar
[4]De Gennes, P. G. & Prost, J. (1993) The Physics of Liquid Crystals, 2nd ed., International Series of Monographs on Physics 83, Oxford Science Publications, Oxford, UK.CrossRefGoogle Scholar
[5]Howell, P. D. (1994) Extensional Thin Layer Flows, DPhil thesis, University of Oxford, Oxford, UK.Google Scholar
[6]Howell, P. D. (1996) Models for thin viscous sheets. Eur. J. Appl. Math. 7 (4), 321343.Google Scholar
[7]King, J. R. & Oliver, J. M. (2005) Thin film modeling of poroviscous free surface flows. Eur. J. Appl. Math. 16, 519553.Google Scholar
[8]Leslie, F. M. (1979) Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4, 181.Google Scholar
[9]Lin, T.-S., Kondic, L., Thiele, U. & Cummings, L. J. (2013) Modeling spreading dynamics of nematic liquid crystals in three spatial dimensions. J. Fluid Mech. 729, 214230.Google Scholar
[10]Lin, T.-S., Kondic, L., Thiele, U. & Cummings, L. J. (2013) Note on the hydrodynamic description of thin nematic films: Strong anchoring model. Phys. of Fluids. 25 (8), Art. No. 082102.Google Scholar
[11]Ockendon, H. & Ockendon, J. R. (1995) Viscous Flow, Cambridge University Press, Cambridge, UK.Google Scholar
[12]Palffy-Muhoray, P. (2007) The diverse world of liquid crystals. Phys. Today. 60 (9), 5460.Google Scholar
[13]Poulard, C. & Cazabat, A.-M. (2005) Spontaneous spreading of nematic liquid crystals. Langmuir 21, 62706276.Google Scholar
[14]Rey, A. D. & Cheong, A.-G. (2004) Texture dependence of capillary instabilities in nematic liquid crystalline fibres. Liq. Cryst. 31, 12711284.Google Scholar
[15]Savage, J. R., Caggioni, M., Spicer, P. T. & Cohen, I. (2010) Partial universality: Pinch-off dynamics in fluids with smectic liquid crystalline order. Soft Matter, 6, 892895.Google Scholar
[16]Smolka, L. B., Belmonte, A., Henderson, D. M. & Witelski, T. P. (2004) Exact solution for the extensional flow of a viscoelastic filament. Eur. J. Appl. Math. 15, 679712.Google Scholar
[17]Stewart, I. W. (2004) The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction, Taylor & Francis, New York, NY.Google Scholar
[18]van de Fliert, B., Howell, P. D. & Ockendon, J. R. (1995) Pressure-driven flow of a thin viscous sheet. J. Fluid Mech. 292, 359376.Google Scholar
[19]Voinov, O. V. (1977) Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.Google Scholar