Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T18:08:53.789Z Has data issue: false hasContentIssue false

Existence, uniqueness and stability of transition fronts of non-local equations in time heterogeneous bistable media

Published online by Cambridge University Press:  28 August 2019

WENXIAN SHEN
Affiliation:
Department of Mathematics and Statistics, Auburn University, Auburn, AL36849, USA e-mail: [email protected]
ZHONGWEI SHEN
Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada e-mail: [email protected]

Abstract

The present paper is devoted to the study of the existence, the uniqueness and the stability of transition fronts of non-local dispersal equations in time heterogeneous media of bistable type under the unbalanced condition. We first study space non-increasing transition fronts and prove various important qualitative properties, including uniform steepness, stability, uniform stability and exponential decaying estimates. Then, we show that any transition front, after certain space shift, coincides with a space non-increasing transition front (if it exists), which implies the uniqueness, up-to-space shifts and monotonicity of transition fronts provided that a space non-increasing transition front exists. Moreover, we show that a transition front must be a periodic travelling front in periodic media and asymptotic speeds of transition fronts exist in uniquely ergodic media. Finally, we prove the existence of space non-increasing transition fronts, whose proof does not need the unbalanced condition.

Type
Papers
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Z. Shen is supported by a start-up grant from the University of Alberta and an NSERC discovery grant.

References

Achleitner, F. & Kuehn, C. (2015) Traveling waves for a bistable equation with nonlocal diffusion. Adv. Differential Equations 20(9–10), 887936.Google Scholar
Adams, R. & Fournier, J. (2003) Sobolev Spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam.Google Scholar
Alikakos, N., Bates, P. W. & Chen, X. (1999) Periodic traveling waves and locating oscillating patterns in multidimensional domains. Trans. Amer. Math. Soc. 351(7), 27772805.CrossRefGoogle Scholar
Aronson, D. G. & Weinberger, H. F. (1975) Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation. Lecture Notes in Math., Vol. 446, Springer, Berlin.Google Scholar
Aronson, D. G. & Weinberger, H. F. (1978) Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30(1), 3376.CrossRefGoogle Scholar
Bates, P. W. & Chen, F. (2002) Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation. J. Math. Anal. Appl. 273(1), 4557.CrossRefGoogle Scholar
Bates, P. W. & Chen, F. (2006) Spectral analysis of traveling waves for nonlocal evolution equations. SIAM J. Math. Anal. 38(1), 116126.CrossRefGoogle Scholar
Bates, P. W., Fife, P. C., Ren, X. & Wang, X. (1997) Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138(2), 105136.CrossRefGoogle Scholar
Berestycki, H., Coville, J. & Vo, H-H. (2016) Persistence criteria for populations with non-local dispersion. J. Math. Biol. 72(7), 16931745.CrossRefGoogle ScholarPubMed
Berestycki, H. & Hamel, F. (2002), Front propagation in periodic excitable media. Comm. Pure Appl. Math. 55(8), 9491032.CrossRefGoogle Scholar
Berestycki, H. & Hamel, F. (2007) Generalized travelling waves for reaction-diffusion equations. Perspectives in nonlinear partial differential equations. Contemp. Math., 446, 101123. Amer. Math. Soc., Providence, RI.Google Scholar
Berestycki, H. & Hamel, F. (2012) Generalized transition waves and their properties. Comm. Pure Appl. Math. 65(5), 592648.CrossRefGoogle Scholar
Berestycki, H. & Rodriguez, N. (2017) A non-local bistable reaction-diffusion equation with a gap. Discrete Contin. Dyn. System. 37(2), 685723.CrossRefGoogle Scholar
Cahn, J. W., Mallet-Paret, J. & Van Vleck, E. S. (1999) Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appld. Math. 59, 455493.Google Scholar
Carr, J. & Chmaj, A. (2004) Uniqueness of travelling waves for nonlocal monostable equations. Proc. Amer. Math. Soc. 132(8), 24332439.CrossRefGoogle Scholar
Chen, F. (2002) Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal. 50(6), Ser. A: Theory Methods, 807838.CrossRefGoogle Scholar
Chen, X. (1997) Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differential Equations 2(1), 125160.Google Scholar
Chen, X., Guo, J., & Wu, C-C. (2008) Traveling waves in discrete periodic media for bistable dynamics. Arch. Ration. Mech. Anal. 189(2), 189236.CrossRefGoogle Scholar
Chow, S. N., Mallet-Paret, J. & Shen, W. (1998) Travelling waves in lattice dynamical systems. J. Differ. Equ. 149, 249291.CrossRefGoogle Scholar
Courchamp, F., Berec, J. & Gascoigne, J. (2008) Allee Effects in Ecology and Conservation. Oxford University Press, Oxford, New York, USA.CrossRefGoogle Scholar
Coville, J. & Dupaigne, L. (2005) Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Anal. 60(5), 797819.CrossRefGoogle Scholar
Coville, J. & Dupaigne, L. (2007) On a non-local equation arising in population dynamics. Proc. Roy. Soc. Edinburgh Sect. A 137(4), 727755.CrossRefGoogle Scholar
Coville, J., Dávila, J. & Martínez, S. (2013) Pulsating fronts for nonlocal dispersion and KPP nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(2), 179223.CrossRefGoogle Scholar
Ding, W., Hamel, F. & Zhao, X-Q. (2015) Transition Fronts for periodic bistable reaction-diffusion equations, Calc. Var. Partial Differential Equations 54(3), 25172551.CrossRefGoogle Scholar
Ding, W., Hamel, F. & Zhao, X-Q. (2017) Bistable pulsating fronts for reaction-diffusion equations in a periodic habitat. Indiana Univ. Math. J. 66(4), 11891265.CrossRefGoogle Scholar
Ding, W. & Liang, X. (2015) Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media. SIAM J. Math. Anal. 47 (1), 855896.CrossRefGoogle Scholar
Du, Y. & Matano, H. (2010) Convergence and sharp thresholds for propagation in nonlinear diffusion problems. J. Eur. Math. Soc. 12, 279312.CrossRefGoogle Scholar
Fang, J. & Zhao, X-Q. (2015) Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. (JEMS) 17(9), 22432288.CrossRefGoogle Scholar
Fife, P. C. & McLeod, J. B. (1977) The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65(4), 335361.CrossRefGoogle Scholar
Hamel, F. (2016) Bistable transition fronts in. Adv. Math. 289, 279344.CrossRefGoogle Scholar
Hutson, V., Martinez, S., Mischaikow, K. & Vickers, G. T. (2003) The evolution of dispersal. J. Math. Biol. 47(6), 483517.CrossRefGoogle ScholarPubMed
Jin, Y. & Lewis, M. A. (2012) Seasonal influences on population spread and persistence in streams: Spreading speeds. J. Math. Biol. 65(3), 403439.CrossRefGoogle ScholarPubMed
Levermore, C. D. & Xin, J. (1992) Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. II. Comm. Partial Differential Equations 17, 1112, 1901-1924.CrossRefGoogle Scholar
Lewis, T. & Keener, J. (2000) Wave-block in excitable media due to regions of depressed excitability. SIAM J. Appl. Math. 61(1), 293316.Google Scholar
Lewis, M. A., Petrovskii, S. V. & Potts, J. R. (2016) The mathematics behind biological invasions. With a foreword by Murray, James D.. Interdisciplinary Applied Mathematics, 44. Springer, Cham.CrossRefGoogle Scholar
Lim, T. & Zlatoš, A. (2016) Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion. Trans. Amer. Math. Soc. 368(12), 86158631.CrossRefGoogle Scholar
Mallet-Paret, J. (1999) The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11, 49127.CrossRefGoogle Scholar
Medlock, J. & Kot, M. (2003) Spreading disease: Integro-differential equations old and new. Math. Biosci. 184(2), 201222.CrossRefGoogle ScholarPubMed
Mellet, A., Nolen, J., Roquejoffre, J-M. & Ryzhik, L. (2009) Stability of generalized transition fronts. Comm. Partial Differential Equations 34(4-6), 521552.CrossRefGoogle Scholar
Mollison, D. (1977) Spatial contact models for ecological and epidemic spread. J. R. Statist. Soc. B 39(3), 283326.Google Scholar
Muratov, C. B. & Zhong, X. (2013) Threshold phenomena for symmetric decreasing solutions of reaction-diffusion equations. NoDEA Nonlinear Differ. Equ. Appl. 20, 15191552.CrossRefGoogle Scholar
Nadin, G. (2015) Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire. 32(4), 841873.CrossRefGoogle Scholar
Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.CrossRefGoogle Scholar
Poláik, P. (2011) Threshold solutions and sharp transitions for nonautonomous parabolic equations on. Arch. Ration. Mech. Anal. 199, 6997.CrossRefGoogle Scholar
Poláik, P. (2016) Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations. J. Dynam. Differential Equations 28(3–4), 605625.CrossRefGoogle Scholar
Rawal, N., Shen, W. & Zhang, A. (2015) Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete Contin. Dyn. Syst. 35(4), 16091640.CrossRefGoogle Scholar
Schumacher, K. (1980) Traveling-front solutions for integro-differential equations. I, J. Reine Angew. Math. 316, 5470.Google Scholar
Shen, W. (1999) Travelling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness. J. Differential Equations 159(1), 154.CrossRefGoogle Scholar
Shen, W. (1999) Travelling waves in time almost periodic structures governed by bistable nonlinearities. II. Existence. J. Differential Equations 159(1), 55101.CrossRefGoogle Scholar
Shen, W. (2003) Traveling waves in time periodic lattice differential equations. Nonlinear Anal. 54(2), 319339.CrossRefGoogle Scholar
Shen, W. (2004) Traveling waves in diffusive random media. J. Dynam. Differential Equations 16(4), 10111060.CrossRefGoogle Scholar
Shen, W. (2006) Traveling waves in time dependent bistable equations. Differential Integral Equations 19(3), 241278.Google Scholar
Shen, W. & Shen, Z. (2017) Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type. Trans. Amer. Math. Soc. 369(4), 25732613.CrossRefGoogle Scholar
Shen, W. & Shen, Z. (2017) Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity. Discrete Contin. Dyn. Syst. 37(2), 10131037.CrossRefGoogle Scholar
Shen, W. & Shen, Z. (2017) Regularity and stability of transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity. J. Differential Equations 262(5), 33903430.CrossRefGoogle Scholar
Shen, W. & Shen, Z. (2016) Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. Commun. Pure Appl. Anal. 15(4), 11931213.CrossRefGoogle Scholar
Shen, W. & Shen, Z. (2017) Regularity of transition fronts in nonlocal dispersal evolution equations. J. Dynam. Differential Equations 29(3), 10711102.CrossRefGoogle Scholar
Shen, W. & Zhang, A. (2010) Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differential Equations 249(4), 747795.CrossRefGoogle Scholar
Shen, W. & Zhang, A. (2012) Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats. Proc. Amer. Math. Soc. 140(5), 16811696.CrossRefGoogle Scholar
Shen, W. & Zhang, A. (2012) Traveling wave solutions of spatially periodic nonlocal monostable equations. Comm. Appl. Nonlinear Anal. 19(3), 73101.Google Scholar
Shigesada, N. & Kawasaki, K. (1997) Biological Invasions: Theory and Practice. Oxford Univ. Press.Google Scholar
Weinberger, H. (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45(6), 511548.CrossRefGoogle Scholar
Xin, J. (1991) Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity. J. Dynam. Differential Equations 3(4), 541573.CrossRefGoogle Scholar
Xin, J. (1992) Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. I. Comm. Partial Differential Equations 17(11–12), 18891899.CrossRefGoogle Scholar
Xin, J. (2000) Front propagation in heterogeneous media. SIAM Rev. 42(2), 161230.CrossRefGoogle Scholar
Xin, J. (2009) An Introduction to Fronts in Random Media.Surveys and Tutorials in the Applied Mathematical Sciences, 5. Springer, New York.Google Scholar
Yagisita, H. (2009) Existence of traveling wave solutions for a nonlocal bistable equation: An abstract approach. Publ. Res. Inst. Math. Sci. 45(4), 955979 (2009).CrossRefGoogle Scholar
Zinner, B. (1991) Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96, 127.CrossRefGoogle Scholar
Zinner, B. (1991) Stability of traveling wavefronts for the discrete Nagumo equations. SIAM J. Math. Anal. 22, 10161020.CrossRefGoogle Scholar
Zlatoš, A. (2006) Sharp transition between extinction and propagation of reaction. J. Amer. Math. Soc. 19, 251263.CrossRefGoogle Scholar
Zlatoš, A. (2013) Generalized traveling waves in disordered media: existence, uniqueness, and stability. Arch. Ration. Mech. Anal. 208(2), 447480.CrossRefGoogle Scholar
Zlatoš, A. (2017) Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré Anal. Non Linéaire. 34(7), 16871705.CrossRefGoogle Scholar