Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T21:57:44.264Z Has data issue: false hasContentIssue false

Existence of travelling waves with the critical speed for an influenza model with treatment

Published online by Cambridge University Press:  07 January 2019

DONG DENG*
Affiliation:
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China e-mails: [email protected]; [email protected]
DONGPEI ZHANG
Affiliation:
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China e-mails: [email protected]; [email protected]

Abstract

The main purpose of this paper is to study the existence of travelling waves with a critical speed for an influenza model with treatment. By using some analysis techniques that involve super-critical speeds and an approximation method, the existence of travelling waves with the critical speed is proved.

Type
Papers
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

References

Bai, Z. G. & Zhang, S. L. (2015) Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay. Commun. Nonlinear Sci. Numer. Simul. 22, 13701381.CrossRefGoogle Scholar
Brown, K. J. & Carr, J. (1977) Deterministic epidemic waves of critical velocity. Math. Proc. Cambridge Philos. Soc. 81, 431433.CrossRefGoogle Scholar
Chen, X. & Guo, J. S. (2003) Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123146.CrossRefGoogle Scholar
Chen, Y. Y., Guo, J. S. & Hamel, F. (2017) Traveling waves for a lattice dynamical system arising in a diffusive endemic model. Nonlinearity 30, 23342359.CrossRefGoogle Scholar
Earn, D. J. D., Dushoff, J. & Levin, S. A. (2002) Ecology and evolution of the flu. Trends Ecol. Evol. 17, 334340.CrossRefGoogle Scholar
Fu, S. C., Guo, J. S. & Wu, C. C. (2016) Traveling wave solution for a discrete diffusive epidemic model. J. Nonlinear Convex A 17, 17391751.Google Scholar
Lipsitch, M., Cohen, T., Muray, M. & Levin, B. R. (2007) Antiviral resistance and the control of pandemic influenza. PLoSMed 4, 01110120.Google ScholarPubMed
Ruan, S. G. & Xiao, D. M. (2004) Stability of steady states and existence of traveling waves in a vector disease model. Proc. R Soc. Edinburgh A 134, 9911011.CrossRefGoogle Scholar
Thieme, H. R. & Zhao, X. Q. (2003) Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models. J. Differ. Equations 195, 430470.CrossRefGoogle Scholar
Wang, J. B., Li, W. T. & Yang, F. Y. (2015) Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission. Commun. Nonlinear Sci. Numer. Simul. 27, 136152.CrossRefGoogle Scholar
Wang, Z. C. & Wu, J. H. (2010) Traveling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission. Proc. R Soc. London Ser. A 466, 237261.CrossRefGoogle Scholar
Wu, C. C. (2017) Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. J. Differ. Equations 262, 272282.CrossRefGoogle Scholar
Wu, C. F. & Weng, P. X. (2011) Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete Contin. Dyn. Syst. Ser. B 15, 867892.Google Scholar
Li, Y., Li, W. T. & Yang, F. Y. (2014) Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl. Math. Comput. 247, 723–740.Google Scholar
Yang, F. Y. & Li, W. T. (2018) Traveling waves in a nonlocal dispersal SIR epidemic model with critical wave speed. J. Math. Anal. Appl. 458, 11311146.CrossRefGoogle Scholar
Yang, F. Y., Li, Y., Li, W. T. & Wang, Z. C. (2013) Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discrete Contin. Dyn. Syst. Ser. B 18, 19691993.Google Scholar
Yang, F. Y., Li, W. T. & Wang, Z. C. (2015) Traveling waves in a nonlocal dispersal SIR epidemic model. Nonlinear Anal.-Real. 23, 129147.CrossRefGoogle Scholar
Zhang, T. R. & Wang, W. D. (2014) Existence of traveling wave solutions for influenza model with treatment. J. Math. Anal. Appl. 419 , 469495.CrossRefGoogle Scholar
Zhao, L., Wang, Z. C. & Ruan, S. (2017) Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity 30, 12871325.CrossRefGoogle Scholar