Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T21:59:05.089Z Has data issue: false hasContentIssue false

Excluded-volume potential for rigid molecules endowed with C2v symmetry

Published online by Cambridge University Press:  14 January 2011

F. BISI
Affiliation:
Dipartimento di Matematica and CNISM, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy email: [email protected] Laboratory of Applied Mathematics, Fondazione Università di Mantova, Via Scarsellini 2, 46100 Mantova, Italy
R. ROSSO
Affiliation:
Dipartimento di Matematica and CNISM, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy email: [email protected]

Abstract

The excluded volume of a pair of molecules is proportional to the second virial coefficient in hard-core models that represent, for instance, the reference model in perturbation approaches to statistical theories of fluids [see, e.g. Chap. 5 of Kalikmanov, V. (2001), Statistical Physics of Fluids. Texts and Monograph in Physics, Springer, Berlin]. In three space dimensions, there exist exact results for convex molecules and in fact lack of convexity has been a major obstacle in applying the mathematical techniques employed in the convex case. In this paper, we illustrate how a mixed—analytical and numerical—method can be used to obtain exact expressions of the excluded volume for a pair of non-convex molecules conceived as aggregates of hard spheres; these can model van der Waals regions associated to the atoms forming each molecule. To compute the excluded volume for molecules endowed with C2v symmetry, modelled as chains of tangent hard spheres, we adapt a numerical code available to the scientific community. Because the result is a rather cumbersome expression in term of the relative orientation of the interacting molecules, we expand it over a suitable set of symmetry adapted Wigner functions to build up approximate, but faithful expressions, and we also prove analytical results announced elsewhere [Bisi, F., Durand, G., Rosso, R. & Virga, E. (2008), Polar steric interactions for v-shaped molecules. Phys. Rev. E, 78, 011705].

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Altmann, S. L. (1957) On the symmetries of spherical harmonics. Proc. Camb. Phil. Soc. 53, 343367.CrossRefGoogle Scholar
[2]Bisi, F., Durand, G., Rosso, R. & Virga, E. (2008) Polar steric interactions for v-shaped molecules. Phys. Rev. E 78, 011705.Google Scholar
[3]Bisi, F., Longa, L., Pajak, G. & Rosso, R. (2010) Excluded-volume potential for molecules endowed with tetrahedral symmetry. Mol. Cryst. Liq. Cryst. 525, 1228.CrossRefGoogle Scholar
[4]Blackmore, D., Samulyak, R. & Leu, M. (1999) Trimming swept volumes. Comput.-Aided Des. 31, 215223.Google Scholar
[5]Blanco, M. A., Flórez, M. & Bermejo, M. (1997) Evaluation of the rotation matrices in the basis of real spherical harmonics,. J. Mol. Struct. (Theochem.) 419, 1927.Google Scholar
[6]Buša, J., Džurina, J., Hayryan, E., Hayryan, S., Hu, C.-K., Plavka, J., Pokorny, I., Skřivánek, J. & Wu, M.-C. (2005) ARVO: A FORTRAN package for computing the solvent accessible surface area and the excluded volume of overlapping spheres via analytic equations. Comput. Phys. Commun. 165, 5996.CrossRefGoogle Scholar
[7]Fernando, G., Weinert, M., Watson, R. & Davenport, J. (1994) Point group symmetries and gaussian integration. J. Comput. Phys. 112, 282290.CrossRefGoogle Scholar
[8]Fiałkowski, M., Kapanowski, A. & Sokalski, K. (1995) Microscopic approach to theory of biaxial nematic liquid crystals. Mol. Cryst. Liq. Cryst. 265, 371385.Google Scholar
[9]Isihara, A. (1950) Determination of molecular shape by osmotic measurement. J. Chem. Phys. 18, 14461449.Google Scholar
[10]Jaffer, K., Opps, S. & Sullivan, D. (1999) The nematic-isotropic phase transition in linear fused hard sphere chain fluids. J. Chem. Phys. 110, 1163011642.CrossRefGoogle Scholar
[11]Kalikmanov, V. (2001) Statistical Physics of Fluids. Texts and Monograph in Physics, Springer, Berlin.CrossRefGoogle Scholar
[12]Kihara, T. (1953) Virial coefficients and models of molecules in gases. Rev. Mod. Phys. 25, 831843.CrossRefGoogle Scholar
[13]Lansac, Y., Maiti, P., Clark, N. & Glaser, M. (2003) Phase behaviour of bent-core molecules. Phys. Rev. E 67, 011703.CrossRefGoogle ScholarPubMed
[14]Longa, L., Pajak, G. & Wydro, T. (2009) Chiral symmetry breaking in bent-core liquid crystals. Phys. Rev. E 79, 040701(R).CrossRefGoogle ScholarPubMed
[15]Madsen, L., Dingemans, T., Nakata, M. & Samulski, E. (2004) Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett. 92, 145505 (1–4).CrossRefGoogle ScholarPubMed
[16]McWeeny, R. (2002) Symmetry. An Introduction to Group Theory and Its Applications, Dover, Mineola, NY. Unabridged, unaltered republication of the work originally published by Pergamon Press Ltd., Oxford, England, as Volume 3 Topic 1 (Mathematical Techniques) of the International Encyclopaedia of Chemical Physics and Physical Chemistry.Google Scholar
[17]Mulder, B. (1986) Solution of the excluded volume problem for biaxial particles. Liq. Cryst. 1, 539551.Google Scholar
[18]Mulder, B. (2005) The excluded volume of hard sphero-zonotopes. Mol. Phys. 103, 14111424.CrossRefGoogle Scholar
[19]Onsager, L. (1949) The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, 627659.CrossRefGoogle Scholar
[20]Procesi, C. (2000) Lie Groups. An Approach through Invariants and Representations, Universitext, Springer, New York.Google Scholar
[21]Rose, M. (1995) Elementary Theory of Angular Momentum. Dover, Mineola, NY. Unabridged, unaltered republication of the work originally published by John Wiley & Sons, Inc., New York, 1957.Google Scholar
[22]Rosso, R. (2007) Orientational order parameters in biaxial nematics: polymorphic notation. Liq. Cryst. 34, 737748.Google Scholar
[23]Rosso, R. (2008) Excluded area computations for non-convex molecules. Mol. Phys. 106, 24872506.Google Scholar
[24]Singh, G. & Kumar, B. (2001) Molecular fluids and liquid crystals in convex-body coordinates systems. Ann. Phys. 294, 2447.CrossRefGoogle Scholar
[25]Teixeira, P., Masters, A. J. & Mulder, B. M. (1998) Biaxial nematic order in the hard-boomerang fluid. Mol. Crys. Liq. Cryst. 323, 167189.Google Scholar
[26]Tjipto-Margo, B. & Evans, G. T. (1991) The Onsager theory of the isotropic-nematic liquid-crystal transition: Biaxial particles in uniaxial phases. J. Chem. Phys. 94, 45464556.Google Scholar
[27]Williamson, D. & Jackson, G. (1995) Excluded volume for a pair of linear chains of tangent hard spheres with an arbitrary relative orientation. Mol. Phys. 86, 819836.CrossRefGoogle Scholar
[28]Zannoni, C. (1979) Distribution functions and order parameters. In: Luckhurst, G. & Gray, G. (editors), The Molecular Physics of Liquid Crystals, Academic Press, London, pp. 5183.Google Scholar