Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T14:07:06.057Z Has data issue: false hasContentIssue false

The evolution of turbulent bursts: the b—ε model

Published online by Cambridge University Press:  26 September 2008

M. Bertsch
Affiliation:
Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca, Scientifica, 00133 Roma, Italy
R. Dal Passo
Affiliation:
Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca, Scientifica, 00133 Roma, Italy
R. Kersner
Affiliation:
Computer and Automation Institute of the Hungarian Academy of Sciences, P.O. Box 63, H-1518 Budapest, Hungary

Abstract

We study the semi-empirical b—ε model which describes the time evolution of turbulent spots in the case of equal diffusivity of the turbulent energy density b and the energy dissipation rate ε. We prove that the system of two partial differential equations possesses a solution, and that after some time this solution exhibits self-similar behaviour, provided that the system has self-similar solutions. The existence of such self-similar solutions depends upon the value of a parameter of the model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[A]Amann, H. Global existence and positivity for triangular quasilinear reaction diffusion systems. (To appear.)Google Scholar
[Ar]Aronson, D. G. 1986 The porous medium equation. In Some Problems in Nonlinear diffusion (ed. Fasano, A. and Primicerio, M.), Lecture Notes in Mathematics volume 1224. Springer-Verlag, Berlin.Google Scholar
[B1]Barenblatt, G. I. 1983 Self-similar turbulence propagation from an instantaneous plane source. In Nonlinear Dynamics and Turbulence (eds. Barenblatt, G. I.Looss, G. and Joseph, D. D.), Pitman, pp. 4860.Google Scholar
[B2]Barenblatt, G. I. Private communication.Google Scholar
[BGL]Barenblatt, G. I., Galerkina, N. L. & Luneva, M. V. 1987 Evolution of a turbulence burst. Inzherno-Fizicheskii Zh. 53, 733740 (in Russian).Google Scholar
[BdPK]Bertsch, M., Dal Passo, R. & Kersner, R. 1994 Parameter dependence in the b−ε model. Differential & Integral Equations 7 (5), 11951214.CrossRefGoogle Scholar
[BK1]Bertsch, M. & Kamin, S. 1990 A system of degenerate parabolic equations. SIAM J. Math. Anal. 21, 905916.CrossRefGoogle Scholar
[BK2]Bertsch, M. & Kamin, S. The porous media equation with nonconstant coefficients. (To appear in Adv. in Mathematical Sci. & Appl.)Google Scholar
[dB]DiBenedetto, E. 1983 Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J. 32, 83118.CrossRefGoogle Scholar
[dBF]DiBenedetto, E. & Friedman, A. 1985 Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357, 122.Google Scholar
[HL]Hanjalič, K. & Launder, B. E. 1974 A Reynolds stress model of turbulence and its applications to thin shear flows. J. Fluid Mech. 52, 609638.CrossRefGoogle Scholar
[HP]Hastings, S. P. & Peletier, L. A. 1992 On a self-similar solution for the decay of turbulent bursts. Euro. J. Appl. Math. 3 (4), 319341.CrossRefGoogle Scholar
[H]Hulshof, J. Self-similar solutions for a system arising in the theory of turbulence. (To appear.)Google Scholar
[KV]Kamin, S. & Vazquez, J. L. 1992 The propagation of turbulent bursts. Europe. J. Appl. Math. 3(2), 263272.CrossRefGoogle Scholar
[K]Kolmogorov, A. N. 1942 Equation of turbulent motion of incompressible fluids. Izv. AN.SSSR 6, 5658.Google Scholar
[LMRS]Launder, B. E., Morse, A. P., Rodi, W. & Spalding, D. B. 1972 Prediction of free shear flows–a comparison of six turbulence models. NASA SP 321.Google Scholar
[LS]Launder, B. E. & Spalding, D. B. 1974 The numerical computation of turbulent flows. Computer Math, in Appl. Mech. Eng. 3, 269289.CrossRefGoogle Scholar
[MY]Monin, A. S. & Yaglom, A. M. 1971, 1975 Statistical Fluid Mechanics, vol. 1 and 2. MIT Press, Cambridge, MA.Google Scholar
[P]Prandtl, L. 1945 Über ein neues Formelsystem fur die ausgebildete Turbulenz. Nach. Ges. Wiss. Göttingen, Math.-Phys. Kl, 6–18.Google Scholar
[R]Reynolds, O. 1895 On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Royal Soc. London, 186, 123164.Google Scholar
[Re]Reynolds, W. C. 1976 Computation of turbulent flows. Ann. Rev. Fluid Mech. 8, 183208.CrossRefGoogle Scholar