Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T15:28:02.278Z Has data issue: false hasContentIssue false

Derivation and solution of effective medium equations for bulk heterojunction organic solar cells

Published online by Cambridge University Press:  10 January 2017

G. RICHARDSON
Affiliation:
School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK email: [email protected]
C. P. PLEASE
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK email: [email protected]
V. STYLES
Affiliation:
Department of Mathematics, University of Sussex, Brighton BN1 9QH, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A drift-diffusion model for charge transport in an organic bulk heterojunction solar cell, formed by conjoined acceptor and donor materials sandwiched between two electrodes, is formulated. The model accounts for (i) bulk photogeneration of excitons, (ii) exciton drift and recombination, (iii) exciton dissociation (into polarons) on the acceptor–donor interface, (iv) polaron recombination, (v) polaron dissociation into a free electron (in the acceptor) and a hole (in the donor), (vi) electron/hole transport and (vii) electron–hole recombination on the acceptor–donor interface. A finite element method is employed to solve the model in a cell with a highly convoluted acceptor/donor interface. The solutions show that, with physically realistic parameters, and in the power generating regime, the solution varies little on the scale of the micro-structure. This motivates us to homogenise over the micro-structure; a process that yields a far simpler one-dimensional effective medium model on the cell scale. The comparison between the solution of the full model and the effective medium (homogenised) model is very favourable for applied voltages less than the built-in voltage (the power generating regime) but breaks down as the applied voltages increases above it. Furthermore, it is noted that the homogenisation technique provides a systematic way to relate effective medium modelling of bulk heterojunctions [19, 25, 36, 37, 42, 59] to a more fundamental approach that explicitly models the full micro-structure [8, 38, 39, 58] and that it allows the parameters in the effective medium model to be derived in terms of the geometry of the micro-structure. Finally, the effective medium model is used to investigate the effects of modifying the micro-structure geometry, of a device with an interdigitated acceptor/donor interface, on its current–voltage curve.

Type
Papers
Copyright
Copyright © Cambridge University Press 2017 

References

[1] Allaire, G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 14821518.CrossRefGoogle Scholar
[2] Allsop, N., Nürnberg, R., Lux-Steiner, M. Ch. & Schedel-Niedrig, Th. (2009) Three-dimensional simulations of a thin film heterojunction solar cell with a point contact/defect passivation structure at the heterointerface. Appl. Phys. Lett. 95, 122108-1–122108-3.Google Scholar
[3] Barker, J. A., Ramsdale, C. M. & Greenham, N. C. (2003) Modelling the current-voltage characteristic of bilayer polymer devices. Phys. Rev. B 67, 075205.Google Scholar
[4] Barrett, J. W. & Elliott, C. M. (1987) Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7 283300.Google Scholar
[5] Braun, C. L. (1984) Electric-field assisted dissociation of charge-transfer states as a mechanism for photocarrier production. Chem. Phys. 80, 41574161.Google Scholar
[6] Bruna, M. & Chapman, S. J. (2015) Diffusion in spatially varying porous media. SIAM J.Appl. Maths. 75, 16481674.Google Scholar
[7] Brinkman, D., Fellner, K., Markowich, P. A. & Wolfram, M.-T. (2013) A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite-element scheme. Math. Models Methods Appl. Sci. 23, 839872.Google Scholar
[8] Buxton, G. A. & Clarke, N. (2006) Predicting structure and property relations in polymeric photovoltaic devices. Phys. Rev. B 74, 085207.Google Scholar
[9] Buxton, G. A. & Clarke, N. (2007) Computer simulation of polymer solar cells. Model. Simul. Mater. Sci. Eng. 15, 1326.Google Scholar
[10] Chen, J.-D., Cui, C., Li, Y.-Q., Zhou, L., Ou, Q.-D., Li, C., Li, Y. & Tang, J.-X. (2015) Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 27, 10351041.Google Scholar
[11] Cole, J. D. (1995) Limit process expansions and homogenization. SIAM J. Appl. Math. 55, 410424.Google Scholar
[12] Clarke, T. M. & Durrant, J. R. (2010) Charge photogeneration in organic solar cells. Chem. Rev. 110, 67366767.Google Scholar
[13] Clover, I. (2016) Heliatek raises bar for OPV efficiency to 13.2. pv magazine.Google Scholar
[14] Cioranescu, D. & Donato, P. (1999) An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, Oxford, Oxford University Press.Google Scholar
[15] Credgington, D., Kim, Y., Labram, J., Anthopoulos, T. D. & Durrant, J. (2011) Analysis of recombination in polymer C60 solar cells. J. Phys. Chem. Lett. 2, 2759.Google Scholar
[16] Credgington, D., Jamieson, F. C., Walker, B., Nguyen, T.-Q. & Durrant, J. R. (2012) Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell. Adv. Mater. 24, 21352141.Google Scholar
[17] Crone, B. K., Davids, P. S., Campbell, I. H. & Smith, D. L. (2000) Device model investigation of bilayer organic light emitting diodes. J. Appl. Phys. 87, 1974.CrossRefGoogle Scholar
[18] Davids, P. S., Campbell, I. H. & Smith, D. L. (1997) Device model for single carrier organic diodes. J. Appl. Phys. 82, 6319.CrossRefGoogle Scholar
[19] de Falco, C., Sacco, R. & Verri, M. (2010) Analytical and numerical study of photocurrent transients in organic polymer solar cells. Comput. Methods Appl. Mech. Eng. 199, 17221732.Google Scholar
[20] Deibel, C. & Dyakonov, V. (2010) Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401.Google Scholar
[21] Foster, J. M., Kirkpatrick, J. & Richardson, G. (2013) Asymptotic and numerical prediction of current-voltagencurves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit. J. Appl. Phys. 114, 104501.Google Scholar
[22] Gajewski, H., Kaiser, H. Chr., Langmach, H., Nürnberg, R. & Richter, R. H. (2003) Mathematical modelling and numerical simulation of semiconductor detectors. In: Jäger, W. & Krebs, H. J. (editors), Mathematics? Key Technology for the Future, Springer, Berlin, Heidelberg, pp. 355364.CrossRefGoogle Scholar
[23] Gajewski, H. et al. TeSCA Two- and Three-Dimensional Semi-Conductor Analysis Package, Weierstrass Institute for Applied Analysis and Stochastics, Berlin.Google Scholar
[24] Günes, S., Neugebauer, H. & Sariciftci, N. S. (2007) Conjugated polymer-based organic solar cells. Chem. Rev. 103, 1324.Google Scholar
[25] Gregg, K. A. & Hanna, M. C. (2003) Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 93, 36053614.Google Scholar
[26] Groves, C., Blakesley, J. C. & Greenham, N. C. (2010) Effect of charge trapping on geminate recombination and polymer solar cell performance. Nano Lett. 10, 10631069.Google Scholar
[27] Groves, C., Kimber, R. G. E. & Walker, A. B. (2010) Simulation of loss mechanisms in organic solar cells. J. Chem. Phys. 133, 144110.Google Scholar
[28] Hoppe, H. & Sariciftci, N. S. (2004) Organic solar cells: An overview. J. Mater. Res. 19, 19241945.Google Scholar
[29] de Jongh, P. E. & Vanmaekelbergh, D. (1996) Trap-limited transport in assemblies of nanometer-size TiO2 particles. Phys. Rev. Lett. 77, 34273430.Google Scholar
[30] Keller, J. B. (1980) Darcy's law for flow in porous media and the two-space method. In: Lecture Notes in Pure and Applied Mathematics vol. 54, Dekker, New York.Google Scholar
[31] Keller, J. B. (1977) Effective behavior of heterogeneous media. In: Landman, U. (editor), Statistical Mechanics and Statistical Methods in Theory and Application, Plenum, New York, pp. 631644.CrossRefGoogle Scholar
[32] Kimber, R. G. E., Wright, E. N., O'Kane, S. E. J., Walker, A. B. & Blakesley, J. C. (2012) Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics. Phys. Rev. B 86, 235206.CrossRefGoogle Scholar
[33] Kirchartz, T., Pieters, B. E., Kirkpatrick, J., Rau, U. & Nelson, J. (2011) Recombination via tail states in polythiophene: Fullerene solar cells. Phys. Rev. B 83, 115209.Google Scholar
[34] Kirkpatrick, J., Marcon, V., Kremer, K., Nelson, J. & Andrienko, D. (2007) Charge mobility in discotic mesophases: A multiscale quantum and classical study. Phys. Rev. Lett. 98, 227402.Google Scholar
[35] Kodali, H. K. & Ganapathysubramanian, B. (2012) Computer simulation of heterogeneous polymer photovoltaic devices. Model. Simul. Mater. Sci. Eng. 20, 035015.Google Scholar
[36] Koster, L. J. A., Smits, E. C. P., Mihailetchi, V. D. & Blom, P. W. M. (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B. 72, 085205.Google Scholar
[37] Kotlarski, J. D., Blom, P. W., Koster, L. J., Lenes, M. & Sloof, L. H. (2008) Combined optical and electrical modeling of polymer: Fullerene bulk heterojunction solar cells. J. Appl. Phys. 103, 084502.Google Scholar
[38] Martin, C. M., Burlakov, V. M. & Assender, H. E. (2006) Modellng charge transport in composite solar cells. Sol. Energy Mater. Sol. Cells 90, 900915.CrossRefGoogle Scholar
[39] Martin, C. M., Burlakov, V. M., Assender, H. E. & Barkhouse, D. A. R. (2007) A numerical model for explaining the role of the interface morphology in composite solar cells. J. Appl. Phys. 102, 104506.CrossRefGoogle Scholar
[40] Markov, D. E., Amsterdam, E., Blom, P. W. M., Sieval, A. B. & Hummelen, J. C. (2005) Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J. Phys. Chem. A 109, 52665274.CrossRefGoogle Scholar
[41] McNeill, C. R., Westenhoff, S., Groves, C., Friend, R. H. & Greenham, N. C. (2007) Influence of nanoscale phase separation on the charge generation dynamics and photovoltaic performance of conjugated polymer blends: Balancing charge generation and separation. J. Phys. Chem. C 111, 1915319160.CrossRefGoogle Scholar
[42] Nelson, J. (2003) Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection. Phys. Rev. B 67, 155209.Google Scholar
[43] Nelson, J. (2003) The Physics of Solar Cells, London, Imperial College Press.Google Scholar
[44] Offermans, T., Meskers, S. C. J. & Janssen, R. A. J. (2005) Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: A two-step dissociation mechanism. Chem. Phys. 308, 125133.Google Scholar
[45] Pautmeier, L., Richert, R. & Bässler, H. (1990) Poole-Frenkel behaviour of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation. Synth. Met. 37, 271.Google Scholar
[46] Peumans, P., Uchida, S. & Forrest, S. R. (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158162.Google Scholar
[47] Potscavage, W. J., Yoo, S. & Kippelen, B. (2008) Origin of the open-circuit voltage in a multilayer heterojunction organic solar cells. Appl. Phys. Lett. 93, 193308.Google Scholar
[48] Richardson, G., Denuault, G. & Please, C. P. (2012) Multiscale modelling and analysis of lithium-ion battery charge and discharge. J. Eng. Math. 72, 4172.Google Scholar
[49] Richardson, G., Please, C. P., Foster, J. & Kirkpatrick, J. A. (2012) Asymptotic solution of a model for bilayer organic diodes and solar cells. SIAM J. Appl. Math. 72, 17921817.CrossRefGoogle Scholar
[50] Richardson, G. & Chapman, S. J. (2011) Derivation of the bidomain equations for a beating heart with a general microstructure. SIAM J. Appl. Math. 71, 657675.Google Scholar
[51] Scott, J. C. & Malliaras, G. G. (1999) Charge injection and recombination at the metal-organic interface. Chem. Phys. Lett. 299, 115119.Google Scholar
[52] Seunhyup, Y., Potscavage, W. J., Domercqua, B., Lic, T. D., Jones, S. C., Szozskiewicz, R., Levib, D., Riedoc, E., Marder, S. R. & Killen, B. (2007) Analysis of improved photovoltaic properties of pentacene/C60 organic solarcells: Effects of exciton blocking layer thickness and thermal annealing. Solid-State Electron. 51, 1367.Google Scholar
[53] Rao, A., Wilson, M. W. B., Hodgkiss, J. M., Albert-Seifried, S., Bässler, H. & Friend, R. H. (2010) Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132, 1269812703.Google Scholar
[54] Scharfetter, D. L. & Gummel, H. K. (1969) Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron. Dev. 16, 6477.Google Scholar
[55] Sze, S. M. & Kwok, K. Ng (2006) Physics of Semiconductor Devices, 3rd ed., Wiley-Interscience, New York.Google Scholar
[56] Tansae, C., Blom, P. W. M., de Leeuw, D. M. & Meijer, E. J. (2004) Charge carrier density dependence of mobility in poly-p-phenylene vinylene. Phys. Status Solidi B 201, 1236.Google Scholar
[57] Verlaak, S., Beljonne, D., Cheyns, D., Rolin, C., Linares, M., Castet, F., Cornil, J. & Heremans, P. (2009) Electronic structure and geminate pair energetics at organic-organic interfaces: The case of pentacene/C60 heterojunctions. Adv. Funct. Mater. 19, 38093814.Google Scholar
[58] Williams, J. & Walker, A. B. (2008) Two-dimensional simulations of bulk heterojunction solar cell characteristics. Nanotechnology 19, 424011.Google Scholar
[59] Wagenpfahl, A., Rauh, D., Binder, M., Deibel, C. & Dyakonov, V. (2010) S-shaped current-voltage characteristics of organic solar devices. Phys. Rev. B 82, 115306.Google Scholar
[60] Yang, F., Shtein, M. & Forrest, S. R. (2005) Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat. Mat. 4, 3741.Google Scholar