Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:23:03.520Z Has data issue: false hasContentIssue false

Coarsening rates for the dynamics of slipping droplets

Published online by Cambridge University Press:  04 September 2013

GEORGY KITAVTSEV*
Affiliation:
Max-Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany email: [email protected]

Abstract

Reduced ordinary differential equation (ODE) models arising from a high-order lubrication system and describing coarsening dynamics of droplets in nanometric polymer film interacting on a hydrophobically coated solid substrate in the presence of large slippage at the liquid/solid interface are analysed. In the limiting case of infinite slip length corresponding in applications to free films, a collision/absorption model then arises and is solved explicitly. The exact coarsening law is derived for it analytically and confirmed numerically. Existence of a threshold for the decay of initial distributions of droplet distances at infinity at which the coarsening rates switch from algebraic to exponential ones is shown.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bates, P. W. & Xun, J. P. (1994) Metastable patterns for the Cahn-Hilliard equation: Part I. J. Diff. Equ. 111, 421457.CrossRefGoogle Scholar
[2]Bates, P. W. & Xun, J. P. (1995) Metastable patterns for the Cahn-Hilliard equation: Part II. Layer dynamics and slow invariant manifold. J. Diff. Equ. 117, 165216.CrossRefGoogle Scholar
[3]Bertozzi, A. L., Grün, G. & Witelski, T. P. (2001) Dewetting films: Bifurcations and concentrations. Nonlinearity 14, 15691592.Google Scholar
[4]Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. (2009) Wetting and spreading. Rev. Mod. Phys. 81 (2), 739.Google Scholar
[5]Bray, A. J. (1994) Theory of phase-ordering kinetics. Adv. Phys. 43, 357459.Google Scholar
[6]Brochard-Wyart, F., de Gennes, P.-G., Hervert, H. & Redon, C. (1994) Wetting and slippage of polymer melts on semi-ideal surfaces. Langmuir 10, 15661572.CrossRefGoogle Scholar
[7]Brochard-Wyart, F., Gay, C. & de Gennes, P. G. (1996) Slippage of polymer melts on grafted surfaces. Macromolecules 29, 377382.Google Scholar
[8]Brochard-Wyart, F. & Redon, C. (1992) Dynamics of liquid rim instabilities. Langmuir 8, 23242329.Google Scholar
[9]Clasen, C., Eggers, E., Fontelos, M., Lie, J. & McKinley, G. H. (2006) The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.Google Scholar
[10]Craster, R. V. & Matar, O. K. (2009) Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 1131.Google Scholar
[11]de Gennes, P. G. (1985) Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827863.Google Scholar
[12]Derrida, B., Godrèche, C. & Yekutieli, I. (1991) Scale-invariant regimes in one-dimensional models of growing and coalescing droplets. Phys. Rev. A 44 (10), 62416251.Google Scholar
[13]Erneux, T. & Davis, S. H. (1993) Nonlinear rupture of free films. Phys. Fluids 5, 1117.CrossRefGoogle Scholar
[14]Erneux, T. & Gallez, D. (1997) Can repulsive forces lead to stable patterns in thin liquid films? Phys. Fluids 9, 11941196.CrossRefGoogle Scholar
[15]Fetzer, R., Münch, A., Wagner, B., Rauscher, M. & Jacobs, K. (2007) Quantifying hydrodynamic slip: A comprehensive analysis of dewetting profiles. Langmuir 23, 1055910566.CrossRefGoogle ScholarPubMed
[16]Glasner, K. B. (2008) Ostwald ripening in thin film equations. SIAM J. Appl. Math. 69, 473493.Google Scholar
[17]Glasner, K., Otto, F., Rump, T. & Slepjev, D. (2009) Ostwald ripening of droplets: The role of migration. Eur. J. Appl. Math. 20 (1), 167.CrossRefGoogle Scholar
[18]Glasner, K. B. & Witelski, T. P. (2003) Coarsening dynamics of dewetting films. Phys. Rev. E 67, 016302.Google Scholar
[19]Glasner, K. B. & Witelski, T. P. (2005) Collission vs. collapse of droplets in coarsening of dewetting thin films. Physica D 209, 80104.Google Scholar
[20]Kargupta, K., Sharma, A. & Khanna, R. (2004) Instability, dynamics and morphology of thin slipping films. Langmuir 20, 244253.Google Scholar
[21]Kitavtsev, G. (2009) Derivation, Analysis and Numerics of Reduced Ode Models Describing Coarsening Dynamics of Liquid Droplets. PhD thesis, Institute of Mathematics, Humboldt University of Berlin, Berlin, Germany.Google Scholar
[22]Kitavtsev, G., Laurençot, P. & Niethammer, B. (2011) Weak solutions to lubrication equations in the presence of strong slippage. Methods Appl. Anal. 18, 183202.Google Scholar
[23]Kitavtsev, G., Recke, L. & Wagner, B. (2011) Center manifold reduction approach for the lubrication equation. Nonlinearity 24 (8), 23472369.CrossRefGoogle Scholar
[24]Kitavtsev, G. & Wagner, B. (2010) Coarsening dynamics of slipping droplets. J. Engr. Math. 66, 271292.CrossRefGoogle Scholar
[25]Limary, R. & Green, P. F. (2002) Late-stage coarsening of an unstable structured liquid film. Phys. Rev. E 60, 021601.CrossRefGoogle Scholar
[26]Limary, R. & Green, P. F. (2003) Dynamics of droplets on the surface of a structured fluid film: Late-stage coarsening. Langmuir 19, 24192424.Google Scholar
[27]Menon, G., Niethammer, B. & Pego, B. (2010) Dynamics and self-similarity in min-driven clustering. Trans. Amer. Math. Soc. 362, 65916618.Google Scholar
[28]Menon, G. & Pego, B. (2004) Approach to self-similarity in Smoluchowskis coagulation equations. Comm. Pure Appl. Math. 57 (9), 11971232.Google Scholar
[29]Menon, G. & Pego, B. (2008) The scaling attractor and ultimate dynamics for Smoluchowskis coagulation equations. J. Nonlinear Sci. 18 (2), 143190.Google Scholar
[30]Münch, A. (2005) Dewetting rates of thin liquid films. J. Phys. Condens. Matter 17, S309–S318.Google Scholar
[31]Münch, A. & Wagner, B. (2005) Contact-line instability of dewetting thin films. Physica D 209, 178190.Google Scholar
[32]Münch, A., Wagner, B. & Witelski, T. P. (2006) Lubrication models with small to large slip lengths. J. Engr. Math. 53, 359383.Google Scholar
[33]Oron, A., Davis, S. H. & Bankoff, S. G. (1997) Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.Google Scholar
[34]Otto, F., Rump, T. & Slepjev, D. (2006) Coarsening rates for a droplet model: Rigorous upper bounds. SIAM J. Appl. Math. 38, 503529.CrossRefGoogle Scholar
[35]Peschka, D. (2008) Self-Similar Rupture of Thin Liquid Films With Slippage. PhD thesis, Institute of Mathematics, Humboldt University of Berlin, Berlin, Germany.Google Scholar
[36]Pismen, L. M. & Pomeau, Y. (2004) Mobility and interactions of weakly nonwetting droplets. Phys. Fluids 16, 26042612.Google Scholar
[37]Redon, C., Brochard-Wyart, F. & Rondelez, F. (1991) Dynamics of dewetting. Phys. Rev. Lett. 66 (6), 715718.Google Scholar
[38]Reiter, G., Sharma, A., Casoli, A., David, M.-O., Khanna, R. & Auroy, P. (1999) Thin film instability induced by long range forces. Langmuir 15, 25512558.Google Scholar
[39]San, X. & Ward, M. J. (2000) Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation in one spatial dimension. Stud. Appl. Math. 105, 203234.Google Scholar
[40]Seemann, R., Herminghaus, S. & Jacobs, K. (2001) Gaining control of pattern formation of dewetting films. J. Phys. Condens. Matter 13, 49254938.Google Scholar
[41]Sharma, A. & Reiter, G. (1996) Instability of thin polymer films on coated substrates: Rupture, dewetting and drop formation. J. Colloid Interface Sci. 178, 383389.Google Scholar
[42]Williams, M. B. & Davis, S. H. (1982) Nonlinear theory of film rupture. J. Colloid Interface Sci. 90, 220228.Google Scholar