Article contents
Cahn–Hilliard equations on an evolving surface
Published online by Cambridge University Press: 16 June 2021
Abstract
We describe a functional framework suitable to the analysis of the Cahn–Hilliard equation on an evolving surface whose evolution is assumed to be given a priori. The model is derived from balance laws for an order parameter with an associated Cahn–Hilliard energy functional and we establish well-posedness for general regular potentials, satisfying some prescribed growth conditions, and for two singular non-linearities – the thermodynamically relevant logarithmic potential and a double-obstacle potential. We identify, for the singular potentials, necessary conditions on the initial data and the evolution of the surfaces for global-in-time existence of solutions, which arise from the fact that integrals of solutions are preserved over time, and prove well-posedness for initial data on a suitable set of admissible initial conditions. We then briefly describe an alternative derivation leading to a model that instead preserves a weighted integral of the solution and explain how our arguments can be adapted in order to obtain global-in-time existence without restrictions on the initial conditions. Some illustrative examples and further research directions are given in the final sections.
Keywords
MSC classification
- Type
- Papers
- Information
- European Journal of Applied Mathematics , Volume 32 , Special Issue 5: 30th Anniversary Special Issue , October 2021 , pp. 937 - 1000
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 3
- Cited by