Published online by Cambridge University Press: 15 June 2020
The work in this paper concerns the study of different approximations for one-dimensional one-phase Stefan-like problems with a space-dependent latent heat. It is considered two different problems, which differ from each other in their boundary condition imposed at the fixed face: Dirichlet and Robin conditions. The approximate solutions are obtained by applying the heat balance integral method (HBIM), the modified HBIM and the refined integral method (RIM). Taking advantage of the exact analytical solutions, we compare and test the accuracy of the approximate solutions. The analysis is carried out using the dimensionless generalised Stefan number (Ste) and Biot number (Bi). It is also studied the case when Bi goes to infinity in the problem with a convective condition, recovering the approximate solutions when a temperature condition is imposed at the fixed face. Some numerical simulations are provided in order to assert which of the approximate integral methods turns out to be optimal. Moreover, we pose an approximate technique based on minimising the least-squares error, obtaining also approximate solutions for the classical Stefan problem.
The present work has been partially sponsored by the Project PIP No. 0275 from CONICET-UA, Rosario, Argentina, by the Project ANPCyT PICTO Austral 2016 No. 0090 and by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement 823731 CONMECH.