Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T00:15:03.492Z Has data issue: false hasContentIssue false

Application of the Abel integral equation to an inverse problem in thermoelectricity

Published online by Cambridge University Press:  05 November 2009

GIOVANNI CIMATTI*
Affiliation:
Dipartimento di Matematica, Largo Bruno Pontecorvo 5, Pisa, Italy email: [email protected]

Abstract

This paper deals with a new method to determine the dependence of the electrical conductivity of metals or semiconductors on temperature. It is based on the fact that the current–voltage relationship is easily measurable. This inverse problem is solved by the classical Abel integral equation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abel, N. H. (1826) Résolution d'un problèm de mécanique. Journal für die reine und angewandte Mathematik 1, 97101.Google Scholar
[2]Cimatti, G. (in press) The mathematics of the Thomson effect, Quart. Appl. Math.Google Scholar
[3]Corless, R. M., Gonnet, G. H., Hare, D. E. G, Jeffrey, D. J. & Knuth, D. E. (1996) On Lambert W function, Adv. Comput. Math. 5, 329359.CrossRefGoogle Scholar
[4]Geronflo, R. & Vessella, S. (1991) Abel Integral Equation: Analysis and Applications, Springer-Verlag, Berlin.CrossRefGoogle Scholar
[5]Howison, S. (2005) Practical Applied Mathematics, Cambridge Texts in Applied Mathematics, Cambridge University Press, New York.CrossRefGoogle Scholar
[6]Landau, L. & Lifchitz, E. (1969) Électrodynamique des Milieux Continus, Éditions MIR, Moscow.Google Scholar
[7]Marciá, E. & Rodríguez-Oliveros, R. (2007) Theoretical assessment on the validity of the Wiedemann–Franz law for icosahedral quasicrystals, Phys. Rev. B 75, 1042210.Google Scholar
[8]Ockendon, J., Howison, S., Lacey, A. & Movchan, A. (1999) Applied Partial Differential Equations, Oxford University Press, Oxford.Google Scholar
[9]Tonelli, L. (1928) Su un problema di Abel, Math. Ann. 99, 125134.CrossRefGoogle Scholar
[10]Tricomi, F. G. (1957) Integral Equations, Dover Company, London.Google Scholar
[11]Volterra, V. (1913) Lecons sur les Équations Integrales et les E´uations Intégro-différentielles, Gauthier-Villars, Paris.CrossRefGoogle Scholar
[12]Wiedemann, G. & Franz, R. (1853) Über die Wärme-leitungsfähigkeit der Metalle, Annalen der Physik 89, 497531.Google Scholar