Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T08:59:27.907Z Has data issue: false hasContentIssue false

Application of a generalized finite difference method to mould filling process

Published online by Cambridge University Press:  24 August 2017

E. O. RESÉNDIZ-FLORES
Affiliation:
Division of Postgraduate Studies and Research, Department of Metal-Mechanical Engineering, The Technological Institute of Saltillo, Blvd. V. Carranza 2400 Col. Tecnológico C.P. 25280, Saltillo Coahuila, MX email: [email protected]
J. KUHNERT
Affiliation:
Fraunhofer-Institut für Techno-und Wirtschaftsmathematik, Fraunhofer-Platz-1, 67663 Kaiserslautern, Germany email: [email protected]
F. R. SAUCEDO-ZENDEJO
Affiliation:
Division of Postgraduate Studies and Research, The Technological Institute of Saltillo, Blvd. V. Carranza 2400 Col. Tecnológico C.P. 25280, Saltillo Coahuila, MX email: [email protected]

Abstract

This paper proposes the use of a generalized finite difference method for the numerical simulation of free surface single phase flows during mould filling process which are common in some industrial processes particularly in the area of metal casting. A novel and efficient idea for the computation of the normal vectors for free surface flows is introduced and presented for the first time. The incompressible Navier–Stokes equations are numerically solved by the well-known Chorin's projection method. After we showed the main ideas behind the meshless approach, some numerical results in two and three dimensions are presented corresponding to mould filling process simulation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Basic, H., Demirdzic, I. & Muzaferija, S. (2005) Finite volume method for simulation of extrusion processes. Int. J. Numer. Methods Eng. 62 (4), 475494.Google Scholar
[2] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. & Krysl, P. (1996) Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg. 139 (1–4), 347.CrossRefGoogle Scholar
[3] Buruchenko, S. K. (2016) Three-dimensional simulation of tsunami run up around conical island using smoothed particle hydrodynamics. IOP Conference Series: Earth and Environ. Sci. 44 (3), 032026.Google Scholar
[4] Campbell, J. (2003) Castings. Advanced Materials Research, 2nd ed. Butterworth-Heinemann, Great Britain.Google Scholar
[5] Cleary, P. W., Ha, J. & Ahuja, V. (2000) High pressure die casting simulation using smoothed particle hydrodynamics. Int. J. Cast. Met. Res. 12 (6), 335355.Google Scholar
[6] Cleary, P. W. & Ha, J. (2000) Three dimensional modelling of high pressure die casting. Int. J. Cast. Met. Res. 12 (6), 357365.Google Scholar
[7] Cleary, P. W., Ha, J., Prakash, M. & Nguyen, T. (2006) 3D SPH flow predictions and validation for high pressure die casting of automotive components. Appl. Math. Model. 30 (11), 14061427.CrossRefGoogle Scholar
[8] Cleary, P. W., Prakash, M. & Ha, J. (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J. Mater. Process. Technol. 177 (1–3), 4148.Google Scholar
[9] Cleary, P. W., Ha, J., Prakash, M. & Nguyen, T. (2010) Short shots and industrial case studies: Understanding fluid flow and solidification in high pressure die casting. Appl. Math. Modelling 34 (8), 20182033.CrossRefGoogle Scholar
[10] Cleary, P. W. (2010) Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting. Appl. Math. Model. 34 (11), 31893201.Google Scholar
[11] Cleary, P. W., Ha, J., Prakash, M., Sinnott, M. D., Rudman, M. & Das, R. (2011) Large scale simulation of industrial, engineering and geophysical flows using particle methods. Comput. Methods Appl. Sci. 25, 89111.CrossRefGoogle Scholar
[12] Cleary, P. W., Ha, J., Prakash, M., Alguine, V. & Nguyen, T. (2002) Flow modelling in casting processes. Appl. Math. Model. 26 (2), 171190.CrossRefGoogle Scholar
[13] Dhatt, G., Gao, D. M. and Cheikh, A. B. (1990) A finite element simulation of metal flow in moulds. Int. J. Num. Meth. Engrg. 30 (4), 821831.CrossRefGoogle Scholar
[14] Fang, J. & Parriaux, A. (2008) A regularized Lagrangian finite point method for the simulation of incompressible viscous flows. J. Comput. Phys. 227 (20), 88948908.CrossRefGoogle Scholar
[15] Gingold, R. A. & Monaghan, J. J. (1977) Smoothed particle hydrodynamics: Theory and applications to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (3), 375389.Google Scholar
[16] Hetu, J. F., Gao, D. M., Kabanemi, K. K., Bergeron, S., Nguyen, K. T. & Loong, C. A. (1998) Numerical modeling of casting processes. Adv. Perform. Mate. 5 (1–2), 6582.Google Scholar
[17] Hirt, C. W. & Nichols, B.D. (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.Google Scholar
[18] Jefferies, A., Kuhnert, J., Aschenbrenner, L. & Giffhorn, U. (2015) Finite pointset method for the simulation of a vehicle travelling through a body of water. Lecture Notes in Comput. Sci. Eng. 100, 205221.Google Scholar
[19] Kermanpur, A., Mahmoudi, S. & Hajipour, A. (2008) Numerical simulation of metal flow and solidification in the multi-cavity casting moulds of automotive components. J. Mater. Process. Technol. 206 (1–3), 6268.Google Scholar
[20] Kopysov, S. P., Tonkov, L. E., Chernova, A. A. & Sarmakeeva, A. S. (2015) Modelling of the incompressible liquid flow interaction with barriers using VOF and SPH methods. J. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki 25 (3), 405420.Google Scholar
[21] Kuhnert, J. (1999) General smoothed particle hydrodynamics. PhD. Thesis. Technische Universität Kaiserslautern, Germany.Google Scholar
[22] Kuhnert, J. (2003) An upwind finite pointset method (FPM) for compressible euler and navier-stokes equations. Lecture Notes in Comput. Sci. Eng. 26, 239249.CrossRefGoogle Scholar
[23] Kuhnert, J. & Ostermann, I. (2014) The finite pointset method (FPM) and an application in soil mechanics. Lecture Notes in Earth Syst. Sci., 815–818.CrossRefGoogle Scholar
[24] Wawreńczuk, A., Kuhnert, J. & Siedow, N. (2007) FPM computations of glass cooling with radiation. Comput. Methods Appl. Mech. Engrg. 196 (45), 46564671.Google Scholar
[25] Lewis, R. W. & Ravindran, K. (2000) Finite element simulation of metal casting. Int. J. Numer. Methods Eng. 47 (1–3), 2959.Google Scholar
[26] Liu, G. R. (2009) Mesh Free Methods: Moving Beyond the Finite Element Method, 2nd ed., CRC Press, USA.Google Scholar
[27] Lucy, L. B. (1977) A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 10131024.Google Scholar
[28] Nguyen, V. P., Rabczuk, T., Bordas, S. & Duflot, M. (2008) Meshless methods: A review and computer implementation aspects. Math. Comput. Simul. 79 (3), 763–813.Google Scholar
[29] Oñate, E., Idelsohn, S., Zienkiewics, O. & Taylor, R. (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Methods Eng. 39 (22), 38393866.Google Scholar
[30] Oñate, E., Idelsohn, S., Zienkiewics, O., Taylor, R. & Sacco, S. (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput. Methdos Appl. Mech. Engrg. 139 (1–4), 315346.CrossRefGoogle Scholar
[31] Parka, J. S., Kimb, S. M., Kimc, M. S. & Lee, W. I. (2005) Finite element analysis of flow and heat transfer with moving free surface using fixed grid system. Int. J. Comput. Fluid. Dyn. 19 (3), 263276.CrossRefGoogle Scholar
[32] Perminov, V. A., Rein, T. S. & Karabtcev, S. N. (2015) NEM and MFEM simulation of interaction between time-dependent waves and obstacles. IOP Conf. Series: Mater. Sci. Eng. 81 (1), 012099.Google Scholar
[33] Ramana, T. V. (1996) Metal Casting: Principles and Practice, 1St ed., New Age International (P) Ltd, India.Google Scholar
[34] Ren, J., Ouyang, J., Jiang, T. & Li, Q. (2011) Simulation of complex filling process based on the generalized Newtonian fuid model using a corrected SPH scheme. Comput. Mech. 49 (5), 643665.Google Scholar
[35] Schmid, M. & Klein, F. (1995) Fluid flow in die cavities – experimental and numerical simulation. In: NADCA 18. International Die Casting Congress and Exposition, 93–99.Google Scholar
[36] Suchde, P., Kuhnert, J., Schröder, S. & Klar, A. (2017) A flux conserving meshfree method for conservation laws. Int. J. Numer. Methods Eng..Google Scholar
[37] Tiwari, S. & Kuhnert, J. (2001) Grid free method for solving the Poisson equation. Berichte des Fraunhofer ITWM 25.Google Scholar
[38] Tiwari, S. & Kuhnert, J. (2002) Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations. Springer LNCSE: Meshfree methods for Partial Differential Equations 26, 373387.Google Scholar
[39] Tiwari, S. & Kuhnert, J. (2003) Particle method for simulation of free surface flows. In: Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, Heidelberg, 889–898.Google Scholar
[40] Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Olawsky, F. & Wegener, R. (2006) A meshfree method for simulations of interactions between fluids and flexible structures. Lecture Notes in Comput. Sci. Eng. 57, 249264.Google Scholar
[41] Tiwari, S. & Kuhnert, J. (2007) Modeling of two-phase flows with surface tension by finite pointset method (FPM). J. Comput. Appl. Math. 203 (2), 376386.Google Scholar
[42] Tiwari, S. & Kuhnert, J. (2002) A meshfree method for incompressible fluid flows with incorporated surface tension. Revue Europeenne des Elements 11 (7–8), 965987.Google Scholar