Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-16T15:28:33.028Z Has data issue: false hasContentIssue false

Analysis of the viscous quantum hydrodynamic equations for semiconductors

Published online by Cambridge University Press:  04 March 2005

MARIA PIA GUALDINI
Affiliation:
Fachbereich Mathematik und Informatik, Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany email [email protected], [email protected]
ANSGAR JÜNGEL
Affiliation:
Fachbereich Mathematik und Informatik, Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany email [email protected], [email protected]

Abstract

The steady-state viscous quantum hydrodynamic model in one space dimension is studied. The model consists of the continuity equations for the particle and current densities, coupled to the Poisson equation for the electrostatic potential. The equations are derived from a Wigner–Fokker–Planck model and they contain a third-order quantum correction term and second-order viscous terms. The existence of classical solutions is proved for “weakly supersonic” quantum flows. This means that a smallness condition on the particle velocity is still needed but the bound is allowed to be larger than for classical subsonic flows. Furthermore, the uniqueness of solutions and various asymptotic limits (semiclassical and inviscid limits) are investigated. The proofs are based on a reformulation of the problem as a fourth-order elliptic equation by using an exponential variable transformation.

Type
Papers
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)