Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:51:19.778Z Has data issue: false hasContentIssue false

Analysis of a mixture model of tumor growth

Published online by Cambridge University Press:  07 May 2013

JOHN LOWENGRUB
Affiliation:
Departments of Mathematics and Biomedical Engineering, University of California, Irvine, CA 92697-3875, USA email: [email protected]
EDRISS TITI
Affiliation:
Departments of Mathematics and Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3875, USA; Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel email: [email protected]
KUN ZHAO
Affiliation:
Department of Mathematics, Tulane University, New Orleans, LA 70118-5665, USA email: [email protected]

Abstract

We study an initial-boundary value problem for a coupled Cahn–Hilliard–Hele–Shaw system that models tumour growth. For large initial data with finite energy, we prove global (local resp.) existence, uniqueness, higher order spatial regularity and the Gevrey spatial regularity of strong solutions to the initial-boundary value problem in two dimensions (three dimensions resp.). Asymptotically in time, we show that the solution converges to a constant state exponentially fast as time tends to infinity under certain assumptions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adams, R. (1975) Sobolev Spaces, Academic Press, New York.Google Scholar
[2]Alikakos, N., Bates, P. & Fusco, G. (1991) Slow motion for the Cahn-Hilliard equation in one space dimension. J. Differ. Equ. 90, 81135.Google Scholar
[3]Bates, P. & Fife, P. (1993) The dynamics of nucleation for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53 (4), 9901008.Google Scholar
[4]Boyer, F. (1999) Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptotic Anal. 20, 175212.Google Scholar
[5]Boyer, F. (2001) Nonhomogeneous Cahn-Hilliard fluid. Ann. Inst. Henri Poincaré, Anal. Non-Linéaire 18 (2), 225259.Google Scholar
[6]Boyer, F. (2002). A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31 (1), 4168.CrossRefGoogle Scholar
[7]Constantin, P. & Foias, C. (1988) The Navier-Stokes Equations, The University of Chicago Press, Chicago, IL.Google Scholar
[8]Debussche, A. & Dettori, L. (1995) On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 24 (10), 14911514.Google Scholar
[9]Doelman, A. & Titi, E. S. (1993) Regularity of solutions and the convergence of the Galerkin method in the Ginzburg–Landau equation. Numer. Funct. Anal. Optim. 14, 299321.Google Scholar
[10]Doelman, A. & Titi, E. S. (1993) On the exponential rate of convergence of the Galerkin approximation in Ginzburg–Landau equation. In: Garbey, M. & Kaper, H. G. (editors), Proceedings of the NATO Advanced Research Workshop: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, Kluwer, Dordrecht, Netherlands, pp. 241252.Google Scholar
[11]Elliott, C. & Garcke, H. (1996) On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (2), 404423.Google Scholar
[12]Fabrie, P. (1989) Solutions fortes et majorizations asymtotiques pour le modèle de Darcy Forchheimer en convection naturelle (French) [Strong solutions and asymptotic upper bounds for the Darcy-Forchheimer model in natural convection]. Ann. Fac. Sci. Toulouse Math. 10 (5), 726.CrossRefGoogle Scholar
[13]Feng, X. & Wise, S. M. (2012) Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50 (3), 13201343.CrossRefGoogle Scholar
[14]Ferrari, A. & Titi, E. (1998) Gevrey regularity for nonlinear analytic parabolic equations. Comm. PDE 23 (1–2), 116.Google Scholar
[15]Foias, C. & Temam, R. (1989) Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87, 359369.Google Scholar
[16]Frieboes, H. B., Jin, F., Chuang, Y. L., Wise, S. M., Lowengrub, J. S. & Cristini, V. (2010) Three-dimensional multispecies nonlinear tumor growth – II: Tumor invasion and angiogenesis. J. Theor. Biology 264, 12541278.Google Scholar
[17]Goodman, J., Lee, H. & Lowengrub, J. (2002) Modeling pinchoff and reconnection in a Hele-Shaw cell. I. Analysis and simulation in the nonlinear regime. Phys. Fluids 14, 514545.Google Scholar
[18]Goodman, J., Lee, H. & Lowengrub, J. (2002) Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14, 492513.Google Scholar
[19]Graham, M., Steen, P. & Titi, E. S. (1993) Computational efficiency and approximate inertial manifolds for a Bénard convection system. J. Nonlinear Sci. 3, 153167.CrossRefGoogle Scholar
[20]Gurtin, M., Polignone, D. & Vinals, J. (1996) Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 815831.Google Scholar
[21]Jones, D., Margolin, L. & Titi, E. S. (1995) On the effectiveness of the approximate inertial manifolds – computational study. Theor. Comput. Fluid Dyn. 7, 243260.Google Scholar
[22]Kang, K., Kim, J. & Lowengrub, J. (2003) Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511543.Google Scholar
[23]Kay, D. & Welford, R. (2007) A multigrid finite element solver for the Cahn-Hilliard equation. SIAM J. Sci. Comput. 29, 288304.Google Scholar
[24]Ladyzhenskaya, O. A., Solonnikov, V. A. & Uraltseva, N. N. (1968) Linear and Quasi-Linear Equations of Parabolic Type, AMS, Providence, RI.CrossRefGoogle Scholar
[25]Ly, H. & Titi, E. (1999) Global Gevrey regularity for the 3-D Bénard convection in a porous medium with zero Darcy-Prandtl number. J. Nonlinear Sci. 9 (3), 333362.CrossRefGoogle Scholar
[26]Miranville, A. (1999) A model of Cahn-Hilliard equation base on a microforce balance. C. R. Acad. Sci. Paris Sér. I Math. 328 (12), 12471252.Google Scholar
[27]Oliver, M. & Titi, E. (2000) Gevrey regularity for the attractor of a partially dissipative model of Bénard convection in a porous medium. J. Differ. Equ. 163, 292311.Google Scholar
[28]Oono, Y. & Shinozaki, A. (1992) Spinodal decomposition in a Hele-Shaw cell. Phys. Rev. A 45, R21612164.Google Scholar
[29]Temam, R. (1977) Navier-Stokes Equations, North Holland, Netherlands.Google Scholar
[30]Wang, X. & Zhang, Z. (2012) Well-posedness of the Hele-Shaw-Cahn-Hilliard system. Ann. Inst. Henri Poincaré, Anal. Non-linéaire. DOI: http://dx.doi.org/10.1016/j.anihpc.2012.06.003.Google Scholar
[31]Wei, J. & Winter, M. (1998) Stationary solutions for the Cahn-Hilliard equation. Ann. Inst. Henri Poincaré Anal. Non-linéaire 15 (4), 459492.Google Scholar
[32]Wise, S. (2010) Unconditionally stable finite difference nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations. J. Sci. Comput. 44, 3868.Google Scholar
[33]Wise, S. M., Lowengrub, J. S., Frieboes, H. B. & Cristini, V. (2008) Three-dimensional multispecies nonlinear tumor growth – I: Model and numerical method. J. Theor. Biology 253, 524543.Google Scholar
[34]Wu, H. & Wang, X. (2012) Long-time behavior for the Hele-Shaw-Cahn-Hilliard system. Asymptotic Anal. 78, 217245.Google Scholar