Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T01:31:14.324Z Has data issue: false hasContentIssue false

Roll waves and plugs in two-layer flows

Published online by Cambridge University Press:  01 February 2008

A. BOUDLAL*
Affiliation:
Laboratoire de Mécanique de Lille - UMR CNRS 8107, U.S.T.L., Département de Mécanique Fondamentale, M3, 59655, Villeneuve d'Ascq CedexFrance e-mail: [email protected]

Abstract

In this paper I consider a system of equations describing two stratified fluids flowing in closed, slightly inclined ducts. In the framework of the shallow water approximation with turbulent friction acting on the wall and at the interface, I investigate a special class of periodic travelling waves containing stable moving jumps, namely, roll waves and periodic slug flows. The modulation equations of roll waves and slugs are derived and a nonlinear stability criterion is obtained. As for plug flow, only a gas–liquid system is considered. The stability criterion is expressed in terms of an integro-differential relation. For self-similar cross-section, this criterion is simplified to a relation for a function of one variable only.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barnea, D. & Taitel, Y. (1994) Interfacial and structural stability of separated flow. Int. Multiphase Flow 20, 387414.CrossRefGoogle Scholar
[2]Boudlal, A. & Dyment, A. (1986) Ondes de crue et ondes périodiques avec discontinuités dans une canalisation cylindrique, contenant deux fluides non miscibles. C. R. Mécanique 302 (II), 8497–500.Google Scholar
[3]Boudlal, A. (1993) Stabilité et ondes périodiques avec discontinuités à l'interface de deux fluides non miscibles stratifiés en canalisation quasi–horizontale. 11ème congrès français de Mécanique, Lille, Villeneuve d'ascq 3, 2528.Google Scholar
[4]Boudlal, A. & Dyment, A. (1996) Weakly nonlinear interfacial waves in a duct of arbitrary cross section. Eur. J. Mech. B/Fluids 15 (3), 331366.Google Scholar
[5]Boudlal, A. & Liapidevskii, V. Yu. (2002) Stability of roll waves in open channel flows. C. R. Mécanique 330, 291295.CrossRefGoogle Scholar
[6]Boudlal, A. & Liapidevskii, V. Yu. (2004) Multi–Shock Structure of Roll Waves. C. R. Mécanique 332, 659664.CrossRefGoogle Scholar
[7]Boudlal, A. & Liapidevskii, V. Yu. (2004) Roll waves in non–regular Inclined Channel. Euro. Jnl. Appl. Math. 303, 257271.CrossRefGoogle Scholar
[8]Boudlal, A. (2004) Periodic Travelling Waves of finite Amplitude in Two–layer flow. 3rd International Symposium on Two–Phase Flow Modelling and Experimentation Pisa, pp. 1–6.Google Scholar
[9]Chu, V. H. & Baddour, R. E. (1984) Turbulent gravity–stratified shear flows. JFM 138, 353378.CrossRefGoogle Scholar
[10]Boudlal, A. & Liapidevskii, V. Yu. (2004) Stability of Gas–Liquid in Vertical Helical Coils and Inclined Tubes. 3rd International Symposium on Two–Phase Flow Modelling and Experimentation, Pisa, pp. 1–6.Google Scholar
[11]Liapidevskii, V. Yu. (2000) The Structure of roll waves in two–layer flows. J. Appl. Math. Mech. 64, 937943.CrossRefGoogle Scholar
[12]Boudlal, A. & Liapidevskii, V. Yu. (2004) Stability of regular Roll waves. Comput. Technol. 10 (2), 314.Google Scholar
[13]Jeffreys, H. (1925) The flow of water in an inclined channel of rectangular section. Philos. Mag. 49 (6), 793807.CrossRefGoogle Scholar
[14]Dyment, A. & Boudlal, A. (2004) A Theoretical Model for gas–liquid slug flow in down inclined ducts. Int. Multiphase Flow 30, 521550.CrossRefGoogle Scholar
[15]Dressler, R. F. (1949) Mathematical solution of the problem of roll-waves in inclined open channels. Commun. Pure Appl. Math. 2, 149194.CrossRefGoogle Scholar
[16]Rozdestvenskii, B. L. & Yanenko, N. N. (1983) Systems of quasilinear equations and their application to gas dynamics. Am. Soc. Trans. 55, pp. 1659.Google Scholar
[17]Whitham, G. B. (1974) Linear and Nonlinear Waves. New York: John Wiley.Google Scholar
[18]Wood, I. R. & Simpson, J. E. (1984) Jumps in layered miscible fluids. JFM 140, 329342.CrossRefGoogle Scholar