Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T07:16:05.069Z Has data issue: false hasContentIssue false

Pulsating travelling fronts: Asymptotics and homogenization regimes

Published online by Cambridge University Press:  01 August 2008

MOHAMMAD EL SMAILY*
Affiliation:
Université Aix-Marseille III, LATP, Faculté des Sciences et Techniques, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France email: [email protected]

Abstract

This paper is concerned with some non-linear propagation phenomena for reaction–advection–diffusion equations with Kolmogrov–Petrovsky–Piskunov (KPP)-type non-linearities in general periodic domains or in infinite cylinders with oscillating boundaries. Having a variational formula for the minimal speed of propagation involving eigenvalue problems (proved in Berestycki, H., Hamel, F. & Nadirashvili, N. (2005) The speed of propagation for KPP type problems (periodic framework). J. Eur. Math. Soc. 7, 173–213), we consider the minimal speed of propagation as a function of diffusion factors, reaction factors and periodicity parameters. There we study the limits, the asymptotic behaviours and the variations of the considered functions with respect to these parameters. One of the sections deals with homogenization problem as an application of the results in the previous sections in order to find the limit of the minimal speed when the periodicity cell is very small.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Berestycki, H. (2002) The Influence of Advection on the Propagation of Fronts in Reaction–Diffusion Equations, In: Nonlinear PDEs in Condensed Matter and Reactive Flows, H. Berestycki and Y. Pomeau eds., Kluwer Academic Publ., 2002, pp. 1–45.Google Scholar
[2]Berestycki, H. & Hamel, F. (2002) Front propagation in periodic excitable media. Comm. Pure Appl. Math. 55, 9491032.CrossRefGoogle Scholar
[3]Berestycki, H., Hamel, F. & Nadirashvili, N. (2005) The speed of propagation for KPP type problems (periodic framework). J. Eur. Math. Soc. 7, 173213.CrossRefGoogle Scholar
[4]Berestycki, H., Hamel, F. & Nadirashvili, N. (2005) Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Comm. Math. Phys. 253 (2), 451480.CrossRefGoogle Scholar
[5]Berestycki, H., Hamel, F. & Roques, L. (2005) Analysis of the periodically fragmented environment model: I—The effect of heterogeneous environnement on species conservations. J. Math. Biol. 51 (1), 75113.CrossRefGoogle Scholar
[6]Berestycki, H., Hamel, F. & Roques, L. (2005) Analysis of the periodically fragmented environment model: II—Biological invasions and pulsating travelling fronts. J. Math. Pures Appl. (9) 84 (8), 11011146.CrossRefGoogle Scholar
[7]Berestycki, H. & Nirenberg, L. (1991) On the method of moving planes and the sliding method. Bol. Soc. Bras. Mat. 22, 137.CrossRefGoogle Scholar
[8]Berestycki, H. & Nirenberg, L. (1992) Travelling fronts in cylinders. Ann. Inst. H. Poincaré, Anal. Non Lin. 9, 137.Google Scholar
[9]Berestycki, H., Nirenberg, L. & Varadhan, S. R. S. (1994) The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm. Pure Appl. Math. 47, 4792.CrossRefGoogle Scholar
[10]Caffarelli, L. A., Lee, K.-A. & Mellet, A. (2004) Singular limit and homogenization for flame propagation in periodic excitable media. Arch. Ration. Mech. Anal. 172 (2), 153190.CrossRefGoogle Scholar
[11]Caffarelli, L. A., Lee, K.-A. & Mellet, A. (2006) Homogenization and flame propagation in periodic excitable media: The asymptotic speed of propagation. Comm. Pure Appl. Math. 59 (4), 501525.CrossRefGoogle Scholar
[12]ElSmaily, M. Smaily, M.Min-Max formulae for the speeds of pulsating travelling fronts in periodic excitable media, submitted.Google Scholar
[13]El Smaily, M., Hamel, F. & Roques, L. (2007) Homogenization and influence of fragmentation in a biological invasion model, to appear in Discrete Contin. Dyn. Syst.Google Scholar
[14]Fife, P.C. (1979) Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer Verlag, Berlin-New York.CrossRefGoogle Scholar
[15]Heinze, S. (1993) Homogenization of flame fronts, Preprint IWR, Heidelberg.Google Scholar
[16]Heinze, S.Large convection limits for KPP fronts, Preprint 21/(2005), Max-Planck Institut für Mathimatik in den Naturwissenschaften, Leipzig. %S. Heinze, Large convection limits for KPP fronts, preprint.Google Scholar
[17]Kinezaki, N., Kawasaki, K. & Shigesada, N. (2006) Spatial dynamics of invasion in sinusoidally varying enviroments. Popul. Ecol. 48, 263270.CrossRefGoogle Scholar
[18]Kinezaki, N., Kawasaki, K., Takasu, F. & Shigesada, N. (2003) Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biol. 64, 291302.CrossRefGoogle ScholarPubMed
[19]Kolmogorov, A. N., Petrovsky, I. G. & Piskunov, N. S. (1937) Étude de l' équation de la diffusion avec croissance de la quantité de matiére et son application a un probléme biologique, Bulletin Université d'Etat à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale A1, pp. 1–26.Google Scholar
[20]Murray, J. D. (2002) Mathematical biology. I. An introduction. Third edition. Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York.Google Scholar
[21]Nadin, G. (2007) Existance and uniqueness of the solution of a space-time periodic reaction-diffusion equation, preprint.Google Scholar
[22]Nadin, G.Travelling fronts in space-time periodic media, (2007), preprint.Google Scholar
[23]Nolen, J. & Xin, J. (2003) Reaction-diffusion front speeds in spatially-temporally periodic shear flows. SIAM J. Multiscale Model. Simulation 1 (4), 554570.CrossRefGoogle Scholar
[24]Nolen, J. & Xin, J. (2005) Existence of KPP Type Fronts in Space-Time Periodic Shear Flows and a Study of Minimal Speeds Based on Variational Principle, Discrete and Continuous Dynamical Systems 13 (5), 12171234.Google Scholar
[25]Nolen, J., Rudd, M. & Xin, J. (2005) Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dynamics of PDE, 2 (1), 124.Google Scholar
[26]Papanicolaou, G. & Xin, X. (1991) Reaction-diffusion fronts in periodically layered media. J. Stat. Phys. 63, 915931.CrossRefGoogle Scholar
[27]Ronney, P. (1995) Some open issues in premixed turbulent combustion. In: J. Buckmaster & T. Takeno (editors), Mathematical modelling in combustion science, Lect. Notes Phys., Springer-Verlag, Berlin, pp. 3–22.CrossRefGoogle Scholar
[28]Shigesada, N. & Kawasaki, K. (1997) Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford UP, Oxford.CrossRefGoogle Scholar
[29]Shigesada, N., Kawasaki, K. & Teramoto, E. (1979) Spatial segregation of interacting species. J. Theoret. Biol. 79, 8399.CrossRefGoogle ScholarPubMed
[30]Weinberger, H. F. (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45 (6), 511548.CrossRefGoogle Scholar
[31]Williams, F. (1983) Combustion Theory, Addison-Wesley, Reading MA.Google Scholar
[32]Xin, X. (1991) Existence and uniqueness of travelling waves in a reaction–diffusion equation with combustion non-linearity, Indiana Univ. Math. J. 40, 9851008.CrossRefGoogle Scholar
[33]Xin, X. (1991) Existence and stability of travelling waves in periodic media governed by a bistable non-linearity. J. Dyn. Diff. Eq. 3, 541573.CrossRefGoogle Scholar
[34]Xin, X. (1992) Existence of planar flame fronts in convective–diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205233.CrossRefGoogle Scholar
[35]Xin, J. X. (2000) Analysis and modeling of front propagation in heterogeneous media. SIAM Rev. 42, 161230.CrossRefGoogle Scholar
[36]Xin, J. X. (2000) Front propagation in heterogeneous media. SIAM Rev. 42, 161230.CrossRefGoogle Scholar
[37]Zeldovich, Y. B., Barenblatt, G. I., Libovich, V. B. & Mackviladze, G. M. (1985) The Mathematical Theory of Combustion and Explosions, Cons. Bureau, New York.CrossRefGoogle Scholar