Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T00:30:51.077Z Has data issue: false hasContentIssue false

On the IAA version of the Doi–Edwards model versus the K-BKZ rheological model for polymer fluids: A global existence result for shear flows with small initial data

Published online by Cambridge University Press:  08 January 2016

IONEL SORIN CIUPERCA
Affiliation:
Université de Lyon, CNRS, Institut Camille Jordan UMR 5208, Université Lyon 1, Bât Braconnier, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France email: [email protected]
ARNAUD HEIBIG
Affiliation:
INSA-Lyon, Pôle de Mathématiques, Bât. Leonard de Vinci No. 401, 21 Avenue Jean Capelle, F-69621, Villeurbanne, France email: [email protected], [email protected]
LIVIU IULIAN PALADE
Affiliation:
INSA-Lyon, Pôle de Mathématiques, Bât. Leonard de Vinci No. 401, 21 Avenue Jean Capelle, F-69621, Villeurbanne, France email: [email protected], [email protected]

Abstract

This paper establishes the existence of smooth solutions for the Doi–Edwards rheological model of viscoelastic polymer fluids in shear flows. The problem turns out to be formally equivalent to a K-BKZ equation but with constitutive functions spanning beyond the usual mathematical framework. We prove, for small enough initial data, that the solution remains in the domain of hyperbolicity of the equation for all t≥0.

Type
Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to Professor Denis Serre, Ecole Normale Supérieure de Lyon, France, on the occasion of his 60th birthday anniversary.

References

[1] Aarts, A. C. T. & van de Ven, A. A. F. (1995) Transient behaviour and stability points of the Poiseuille flow of a KBKZ-fluid. J. Eng. Math. 29 (4), 371392.Google Scholar
[2] Bae, H. & Trivisa, K. (2013) On the Doi model for the suspensions of rod-like molecules: Global-in-time existence. Commun. Math. Sci. 11 (3), 831850.Google Scholar
[3] Barrett, J. W., Schwab, C. & Süli, E. (2011) Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15 (6), 12111289.Google Scholar
[4] Barrett, J. W. & Süli, E. (2005) Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains. Math. Models Methods Appl. Sci. 21 (6), 12111289.Google Scholar
[5] Barrett, J. W. & Süli, E. (2006) Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type models. Math. Models Methods Appl. Sci. 22 (5), 1150024.Google Scholar
[6] Bird, R. B., Armstrong, R. C. & Hassager, O. (1987) Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theories, J. Wiley & Sons, New-York.Google Scholar
[7] Blanc, X., Le Bris, C. & Lions, P. -L. (2002) From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164 (4), 341381.Google Scholar
[8] Brandon, D. & Hrusa, W. J. (1990) Global existence of smooth shearing motions of a nonlinear viscoelastic fluid. J. Integral Equ. Appl. 2 (3), 333351.CrossRefGoogle Scholar
[9] Brandon, D. (1991) Global existence and asymptotic stability for a nonlinear integro-differential equation modeling heat flow. SIAM J. Math. Anal. 22 (1), 72106.Google Scholar
[10] Busuioc, A. V., Ciuperca, I. S., Iftimie, D. & Palade, L. I. (2014) The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation. J. Dyn. Differ. Equ. 26 (2), 217241.Google Scholar
[11] Chupin, L. (2010) Fokker-Planck equation in bounded domain. Ann. Inst. Fourier 60 (1), 217255.Google Scholar
[12] Ciuperca, I. S. & Heibig, A. (2015) Existence and uniqueness of a density probability solution for the stationary Doi-Edwards equation, Annales de l'Institut Henri Poincaré - Analyse non linéaire, doi:10.1016/j.anihpc.2015.05.003, accepted for publication.Google Scholar
[13] Ciuperca, I. S., Heibig, A. & Palade, L. I. (2012) Existence and uniqueness results for the Doi-Edwards polymer melt model: The case of the (full) nonlinear configurational probability density equation. Nonlinearity 25 (4), 9911009.CrossRefGoogle Scholar
[14] Ciuperca, I. S. & Palade, L. I. (2009) The steady state configurational distribution diffusion equation of the standard FENE dumbbell polymer model: Existence and uniqueness of solutions for arbitrary velocity gradients. Math. Models Methods Appl. Sci. 19, 20392064.Google Scholar
[15] Ciuperca, I. S. & Palade, L. I. (2010) On the existence and uniqueness of solutions of the configurational probability diffusion equation for the generalized rigid dumbbell polymer model. Dyn. Partial Differ. Equ. 7, 245263.Google Scholar
[16] Ciuperca, I. S. & Palade, L. I. (2011) Asymptotic behavior of the solution of the distribution diffusion equation for FENE dumbbell polymer model. Math. Modelling Nat. Phenom. 6 (5), 8497.Google Scholar
[17] Constantin, P. & Masmoudi, N. (2008) Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. Commun. Math. Phys. 278, 179191.Google Scholar
[18] de Gennes, P.-G. (1979) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca NJ and London.Google Scholar
[19] Doi, M. & Edwards, S. F. (1978) Dynamics of concentrated polymer systems, Part 3.-The constitutive equation. J. Chem. Soc. Faraday Trans. II 74, 18181832.Google Scholar
[20] Doi, M. & Edwards, S. F. (1989) The Theory of Polymer Dynamics, Oxford University Press, Oxford.Google Scholar
[21] Degond, P., Lemou, M. & Picasso, M. (2002) Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62 (5), 15011519.Google Scholar
[22] Engler, H. (1991) Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials. Arch. Ration. Mech. Anal. 113 (1), 138.Google Scholar
[23] Engler, H. (1995) Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials. Arch. Ration. Mech. Anal. 130 (4), 401.Google Scholar
[24] Eller, M. M. (2005) Gårding's inequality on manifolds with boundary. In: Imanuvilev, O., Leugering, G., Triggiani, R. & Zhang, B. (editors), Control Theory of Partial Differential Equations, Chapman & Hall/CRC, Boca Raton FL, Chap. 6, pp. 8799.Google Scholar
[25] Gripenberg, G., Londen, S.-O. & Staffans, O. (1990) Volterra Integral and Functional Equations, Cambridge University Press.Google Scholar
[26] Hrusa, W. J. & Renardy, M. (1988) A model equation for viscoelasticity with a strongly singular kernel. SIAM J. Math. Anal. 19, 257269.Google Scholar
[27] Jourdain, B., Le Bris, C., Lelievre, T. & Otto, F. (2006) Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181 (1), 97148.CrossRefGoogle Scholar
[28] Kim, J. U. (1982) Global smooth solutions of the equations of motion of a nonlinear fluid with fading memory. Arch. Ration. Mech. Anal. 79, 97130.Google Scholar
[29] Le Bris, C. & Lions, P. -L. (2008) Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients. Commun. Partial Differ. Equ. 33 (7), 12721317.Google Scholar
[30] Lions, J.-L. & Magenes, E. (1968) Problèmes aux Limites Non-homogènes et Applications, Vol. 1, Dunod, Paris.Google Scholar
[31] Masmoudi, N. (2008) Well-posedness for the FENE dumbbell model of polymeric flows. Commun. Pure Appl. Math. 61 (12), 16851714,.Google Scholar
[32] Masmoudi, N. (2013) Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Inventiones Math. 191, 427500.CrossRefGoogle Scholar
[33] Öttinger, H.-C. (2006) Beyond Equilibrium Thermodynamics, Wiley.Google Scholar
[34] Otto, F. & Tzavaras, A. E. (2008) Continuity of velocity gradients in suspensions of rod-like molecules. Commun. Math. Phys. 277 (3), 729758.CrossRefGoogle Scholar
[35] Palade, L. I. (2014) On slow flows of the full nonlinear Doi-Edwards polymer model. Z. Angew. Math. Phys. ZAMP 65, 139148.Google Scholar
[36] Palierne, J. F. (2004) Rheothermodynamics of the Doi-Edwards reptation model, Phys. Rev. Lett. 93: 136001–1136001–4.Google Scholar
[37] Prüss, J. (2012) Evolutionary Integral Equations and Applications, Modern Birkhaüser Classics, Springer, New York NY.Google Scholar
[38] Renardy, M., Hrusa, W. J. & Nohel, J. A. (1987) Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 35, Longman Scientific & Technical, Harlow Essex, CM20 27E, England.Google Scholar
[39] Renardy, M. (2000) Mathematical Analysis of Viscoelastic Flows, SIAM.Google Scholar
[40] Staffans, O. J. (1980) On a nonlinear hyperbolic Volterra equation. SIAM J. Math. Anal. 11, 793812.Google Scholar
[41] Stein, E. M. (1970) Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton NJ.Google Scholar
[42] Taylor, M. E. (1981) Pseudodifferential Operators, Princeton Mathematical Series, Vol. 34. Princeton University Press, Princeton NJ.Google Scholar
[43] Zhang, H. & Zhang, P. (2006) Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181 (2), 373400.Google Scholar