Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T02:12:49.316Z Has data issue: false hasContentIssue false

On a reaction–diffusion system modelling infectious diseases without lifetime immunity

Published online by Cambridge University Press:  09 August 2021

HONG-MING YIN*
Affiliation:
Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA email: [email protected]

Abstract

In this paper, we study a mathematical model for an infectious disease caused by a virus such as Cholera without lifetime immunity. Due to the different mobility for susceptible, infected human and recovered human hosts, the diffusion coefficients are assumed to be different. The resulting system is governed by a strongly coupled reaction–diffusion system with different diffusion coefficients. Global existence and uniqueness are established under certain assumptions on known data. Moreover, global asymptotic behaviour of the solution is obtained when some parameters satisfy certain conditions. These results extend the existing results in the literature. The main tool used in this paper comes from the delicate theory of elliptic and parabolic equations. Moreover, the energy method and Sobolev embedding are used in deriving a priori estimates. The analysis developed in this paper can be employed to study other epidemic models in biological, ecological and health sciences.

Type
Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M. & May, R. M. (1979) Population biology of infectious diseases I. Nature 280, 361367.CrossRefGoogle Scholar
Andrew, J. R. & Basu, S. (2011) Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377, 12481255.CrossRefGoogle Scholar
Bendahmane, M., Langlais, M. & Saad, M. (2002) Existence of solutions for reaction-diffusion systems with $L^1$ -data. Adv. Differ. Equations 7, 743–708.Google Scholar
Bocccardo, L. & Gallouet, T. (1989) Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149169.CrossRefGoogle Scholar
Caceres, M. J. & Canizo, J. A. (2017) Close-to-equilibrium behavior of quadratic reaction-diffusion systems with detailed balance. Nonlinear Anal. 159, 6284.CrossRefGoogle Scholar
Campanato, S. (1966) Equazioni paraboliche del second ordine e space $L^{2, \lambda}(\Omega, \delta)$ . Ann. Math. Pura Appl. 73, 55102.CrossRefGoogle Scholar
Caputo, M. C. & Vasseur, L. (2009) Global regularity of solutions to systems of reaction-diffusion with sub-quadratic growth in any space dimension. Commun. Partial Differ. Equations 34(10), 12281250.CrossRefGoogle Scholar
Chadam, J. M. & Yin, H. M. (1989) An iteration procedure for a class of integrodifferential equations of parabolic type. J. Integral Equations Appl. 2, 3147.CrossRefGoogle Scholar
Eisenberg, M. C., Shuai, Z., Tien, J. H. & van den Driessche, P. (2002) A Cholera model in a patchy environment with water and human movement. Math. Biosci. 180, 2948.Google Scholar
Evans, L. C. (2010) Partial Differential Equations , AMS Graduate Studies in Mathematics, Vol. 19, Providence, Rhode Island, USA.Google Scholar
Hethcote, H. W. (2000) The mathematics of infectious diseases. SIAM Rev. 42, 599653.Google Scholar
Hu, B. (2011) Blow-up Theories for Semilinear Parabolic Equations, Lecture Notes in Mathematics, Springer, New York.Google Scholar
Kermack, W. O. & McKendrick, A. G. (1927) A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700721.Google Scholar
Klements, K., Morgan, J. & Tang, B. Q. (2020) Global classical solutions to quadratic systems with mass control in arbitrary dimensions. Ann. I. H. Poincare AN 37, 281307.Google Scholar
Kuznetsov, Yu. A. & Piccardi, C. (1994) Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32, 109121.CrossRefGoogle ScholarPubMed
Ladyzenskaja, O. A., Solonikov, V. A. & Uralceva, N. N. (1968) Linear and Quasilinear Equations of Parabolic Type , AMS Translation Series, Vol. 23, Rode Island.Google Scholar
Li, M. Y. & Graef, J. R. (1999) Liancheng Wang and, Janos Karsai, Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191213.CrossRefGoogle Scholar
Liao, S. & Wang, J. (2011) Stability analysis and application of a mathematical cholera model. Math. Biosci. Eng. 8, 733752.Google ScholarPubMed
Lieberman, G. M. (1996) Second-Order Parabolic Differential Equations, World Scientific Publication, New York.CrossRefGoogle Scholar
Lou, Y. & Ni, W. M. (1996) Diffusion, self-diffusion and cross-diffusion. J. Differ. Equations 131, 791831.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1979) Population biology of infectious disease II. Nature 280, 455466.CrossRefGoogle Scholar
Morgan, J. & Tang, B. Q. (2020) Boundedness for reaction-diffusion systems with Lyapunov functions and intermediate sum conditions. Nonlinearity 33, 31053133.Google Scholar
Pao, C. V. (1992) Nonlinear Parabolic and Elliptic Equations, World Scientific Publication, New York.CrossRefGoogle Scholar
Shuai, Z. & van den Driessche, P. (2013) Global stability of infectious disease models using lyapunov functions. SIAM J. Appl. Math. 73, 15131532.CrossRefGoogle Scholar
Temam, R. (1988) Infinite-Dimensional Dynamical Systems in Mechanics and Physics , Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York.Google Scholar
The World Health Organization, web page: http//www.who.org.Google Scholar
Thieme, H. (1992) Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. Math. Biosci. 111, 99121.Google ScholarPubMed
Tian, J. P. & Wang, J. (2011) Global stability for Cholera epidemic models. Math. Biosci. 232, 3141.CrossRefGoogle ScholarPubMed
Troianiello, G. M. (1987) Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York.CrossRefGoogle Scholar
Vaidya, N. K., Wang, F. B. & Zou, X. (2012) Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment. Discrete Contin. Dyn. Ser. B 17, 28292848.CrossRefGoogle Scholar
van de Driessche, P. & Watmough, J. (2002) Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease transmission. Math. Biosci. 180, 2948.CrossRefGoogle Scholar
Wang, J. & Wang, X. (2015) Analysis of Cholera epidemics with bacterial growth and spatial movement. J. Biol. Dyn. 9, 233261.CrossRefGoogle ScholarPubMed
Yamazaki, K. & Wang, X. (2016) Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion Cholera epidemic model. Discrete Contin. Dyn. Syst. Ser. B 21, 12971316.CrossRefGoogle Scholar
Yamazaki, K. & Wang, X. (2017) Global stability and uniform persistence of the reaction-convection-diffusion Cholera epidemic model. Math. Biosci. Eng. 14, 559579.Google ScholarPubMed
Yamazaki, K. (2018) Global well-posedness of infectious disease models without life-time immunity: the cases of Cholera and avian influenza. Math. Med. Biol. 10, 200220.Google Scholar
Yin, H. M. (1997) $L^{2,u}$ -estimates for parabolic equations and applications. J. Partial Differ. Equations 10(1), 3144.Google Scholar
Yin, H.-M., Chen, X. & Wang, L. (2017) On a cross-diffusion system modeling vegetation spots and strips in a semi-arid or arid landscape. Nonlinear Anal. 159, 482491.CrossRefGoogle Scholar