Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T14:09:05.222Z Has data issue: false hasContentIssue false

Non-uniqueness for flame propagation when the Lewis number is less than 1

Published online by Cambridge University Press:  26 September 2008

Alexis Bonnet
Affiliation:
Université de Cergy-Pontoise and Ecole Normale Superi´eure

Abstract

We discuss the question of uniqueness of planar flames for a simple one-step chemical reaction. We show that when the Lewis number is less than unity (i.e. species diffusion is larger than heat diffusion) uniqueness cannot be generally assumed. An example with three flames, two of them being stable, is exhibited. Other related questions, such as sufficient conditions for uniqueness to hold and high activation energy limits, are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[BM1]Bachelis, R. D. & Melamed, V. G. 1965 On the non-uniqueness of the stationary solutions for the system of equations of combustion theory with piecewise constant reaction rates and coefficients of thermal conductivity and diffusion. Dokl. Akad. Nauk SSSR, 163, 1338.Google Scholar
[BM2]Bachelis, R. D. & Melamed, V. G. 1966 On the uniqueness of the stationary solution to the system of equations of combustion theory. Prikl. Matem. i Mekh. 30, 368.Google Scholar
[BM3]Bachelis, R. D. & Melamed, V. G. 1968 On the non-uniqueness of the stationary solution for the system of equations of combustion theory for a constant ratio of the coefficients of thermal conductivity and diffusion. Prikl. Mekh. i Tekh. Fiz. 1, 161.Google Scholar
[BNS]Berestycki, H., Nicolaenko, B. & Scheurer, B. 1985 Traveling waves solutions to combustion models and their singular limits. SIAM J. Math. Anal. 16 (6), 12071242.CrossRefGoogle Scholar
[B]Bonnet, A. 1992 Non-unicité pour une onde de propagation de flamme quand le nombre de Lewis est inférieur à 1. C. R. Acad. Sci. Paris, 315 (Série II), 421426.Google Scholar
[BLS]Bonnet, A., Larrouturou, B. & Sainsaulieu, L. 1993 On the stability of multiple planar steady flames when Lewis number is less than 1. Physica D 69, 345352.CrossRefGoogle Scholar
[BL]Buckmaster, J. D. & Ludford, G. S. S. 1982 theory of Laminar Flames. Cambridge University Press.CrossRefGoogle Scholar
[Cl]Clavin, P. 1994 Premixed combustion and gasdynamics. Ann. Rev. Fluid. Mech. 26, 321352.CrossRefGoogle Scholar
[C2]Clavin, P. 1985 Dynamic behavior of premised flame fronts in laminar and turbulent flows. Prog. Energ. Comb. Sci. 11, 159.CrossRefGoogle Scholar
[CFN]Clavin, P., Fife, P. C. & Nicolaenko, B. 1987 Multiplicity and related phenomena in competing reaction flames. SIAM J. Appl. Math. 47 (2), 296331.CrossRefGoogle Scholar
[CL]Clavin, P. & LiÑAn, A. 1984 Theory of gaseous combustion. NATO ASI Ser. B 116, 291338.CrossRefGoogle Scholar
[KPP]Kolmogoroff, A., Petrovsky, I. & Piscounoff, N. 1937 Study of the Diffusion Equation with Growth of the Quantity of Matter and its Application to a Biology Problem. Moscow Univ. Math. Bull. 1, 125.Google Scholar
[L]Larrouturou, B. 1988 The equations of one-dimensional unsteady flame propagation: existence and uniqueness. SIAM J. Math. Anal. 19 (1), 3259.CrossRefGoogle Scholar
[M]Marion, M. 1985 Qualitative properties of a nonlinear system for laminar flames without ignition temperatures. Nonlinear Anal., Theor. Meth. Appl. 9 (11), 12691292.CrossRefGoogle Scholar
[NS]Norbury, J. & Stuart, A. M. 1988 Travelling combustion waves in a porous medium. Part 1-Existence. SIAM J. Appl. Math. 155169.CrossRefGoogle Scholar
[Z]Ostriker, J. P. (ed.) 1992 Selected works of Ya. B. Zeldovich, Vol I. Princeton University Press.Google Scholar
[Sa]Sattinger, D. H. 1976 Stability of waves of nonlinear parabolic equations. Adv. Math. 22, 312355.CrossRefGoogle Scholar
[Si]Sivashinsky, G. I. 1983 Instabilities, pattern formation and turbulence in flames. Ann. Rev. Fluid Mech. 15, 179199.CrossRefGoogle Scholar
[W]Williams, F. 1983 Combustion Theory. Addison-Wesley.Google Scholar
[ZAK]Zeldovich, YA. B., Aldushin, A. P. & Khudyaev, S. I. 1979 Fizica goreniia i vzryva 15–6. 2027. (English translation in [Z], pp. 320–329.)Google Scholar
[ZBLM]Zeldovich, YA. B., Barenblatt, G. I., Libovich, V. B. & Mahviladze, G. M. 1980 Mathematical Theory of Combustion and Detonation. Nauka, Moscow.Google Scholar
[ZFK]Zeldovich, YA. B. & Frank-Kamenetskit, D. A. 1938 A theory of thermal propagation of flame. Acta Phys. Chim. 2, 341.Google Scholar